过充会引起锂电池背面隆起?如何理解过充与防过充

发布时间:2016-05-13 阅读量:817 来源: 我爱方案网 作者:

【导读】人们在充电时往往都有一个误区:保持满电状态才是最好的。或许对于强迫症来说当电池电量从100%跳到99%就会要了他的命,但实际上一直让手机保持在充电状态并不是一个值得推荐的行为,尤其是在设备满电了之后还继续充电,手机电池可真的遭不住这么折腾。

锂电池也不是万能的

有不少长辈在你获得第一个手机的时候总会告诉你,新的手机要先完成全部放电,然后充电满12小时,然后再完全放电,需要如此重复3次。当初傻傻的你必然按照长辈的话老老实实做了,可实际上已经用上锂电池的智能手机早已不再需要这么麻烦的电池保养过程。

需要进行多次放电充电过程的是镍氢电池,这种电池有很强的记忆性,重复充电和放电的过程也是为了让镍氢电池获得最大的充电上限。可如今的手机都用上了锂电池,没有必要在重复如此复杂的电池记忆过程。那么,锂电池就会一直保持着最高的电量上限么?

答案必然是否定的。锂电池虽然以耐用著称,但是在经过多次电池循环充放过程中,不可避免的其电量上限会有所损耗,这种损耗是日积月累形成的,而形成损耗的原因除了正常的充电以外,过充就是罪魁祸首。

如何理解过充现象

过充其实很好理解,就是手机在显示电量已满的情况下还在继续为手机电池进行充电,这种时候我们就称手机正发生过充。在电池电量已满的情况下继续充电会导致正极材料结构变化,造成容量损失,而其分解放氧与电解液会发生剧烈的化学反应,最坏的结果自然就是发生爆炸。
如何理解过充现象
在现实生活发生不少在充电时手机爆炸的案例。比如新华网曾报道在2015年3月4日一23岁女孩充电玩手机被烧焦,山西晚报也曾报道在2015年6月15日一18岁少年充电玩手机时触电身亡。发生这些惨剧的原因可以归结于电池本身有损坏,充电器没有IC保护,电源本身也有质量问题等等。当充电完成后电流还在不断的输入时,因为电池的电容量已经到达上限,此时大部分的电流则由电能转变为热能被消耗,于是电池开始变热。

一般常识也告诉我们,电池最佳的保存方法常温且干燥处,不管是镍氢电池还是锂电池其实都一样。当过充发生时,毫无疑问电流转化的热能会大量散发出来,从而导致锂电池正极电解质发生反应,消耗锂电池的最大电容量,当热量积攒到一定程度时,起火、爆炸这类事件都是有可能发生。

面对安全性如此低的事情,自然手机厂商们和充电器厂商们不会坐视不管。毕竟当用户发生安全问题时倒霉的一定是他们,所以在给手机充电时有了许多的讲究,尤其是以现在主流的以USB口进行充电的手机和充电器都非常有讲究。

为了防过充它们真的很拼

其实现在大部分的手机已经都有IC防护存在。充电器本身也会对电压、电流进行监控。为了保护电池和用户的使用安全,在移动设备上往往会采用涓流充电的方法。

使用USB口进行充电时如果不计算线材上的损耗,USB充电口会与手机进行协商充电并匹配适合的电流,如此一来便可以保证手机不会因为高电流的输入导致大部分电流的损失。在电池电量较低,如10%左右。

此时为电池进行充电的效率最高,电流也达到最高状态。随着电容量的增加,手机要求的电流会逐渐减小,在还剩最后10%~20%到达满电时甚至手机会请求进行脉冲小电流进行充电,从而达到保护电池的目的,这种充电方式也被称为涓流充电,是目前主流手机的充电方案,以此来降低电容量上限的损耗,延长电池寿命。

除了手机电池提供了过充保护,还有一种方式就是依靠充电插座来进行防过充。插座要提供防过充必须首先要提供一个稳定的电压,电压的波动越大则电流也会受到影响。尤其是我国夜晚时间电压波动频繁,能保证USB口输出电压的稳定就非常重要。一般来说USB充电口的电压为5V,一些可以智能分配电流的USB充电口会在手机电池接近满电状态时稍许降低充电口的电压,以降低输入电流缓解电池压力。

这些方法对于手机过充都有很好的抑制作用,但归根就底还是因为我们在手机完成充电的情况下没有拔掉电源,让手机不断重复放电和充电的过程,导致电容量上限的减少。

过充并不是一件小事

对于普通的手机用户来说过充真的不是一件小事,手机电池的寿命直接影响到了你使用这台手机的时间,如果放任手机肆意的过充,相信不到一年的时间电池就要夭折。

如果你能看到电池的背面已经稍稍隆起,那没准就是过充惹的祸。往大了说,过充甚至直接影响到了你的安全,那些山寨机的劣质电池可保不准会放个烟花什么的。想要从根本上避免过充,看来还是要从时间控制上下手才行。

相关资讯
国产突围!川土微电子CA-IF1044AX-Q1 CAN收发器:全链路自主化与EMC性能双突破

随着汽车智能化、电动化浪潮加速,CAN收发器作为车载网络的核心通信接口,其可靠性与安全性成为产业链关注焦点。然而,国际局势的不确定性使得供应链自主可控需求迫在眉睫。川土微电子推出的CA-IF1044AX-Q1 CAN收发器,实现了从设计、晶圆制造到封测的全链条国产化,并通过欧洲权威机构IBEE/FTZ-Zwickau的EMC认证,成为兼具安全性与高性能的国产车规级解决方案。

“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。