可区别不同模式的负载的新型微流体压力传感器

发布时间:2016-06-28 阅读量:752 来源: 我爱方案网 作者:

【导读】新型微流体压力传感器可区别不同模式的负载,该传感器采用以网版印刷的两条银电极运行经两侧圆形区域,模塑出键合至PET薄膜的软硅胶,使其得以打造出坚固且有弹性的传感器。此外,利用导电的液体金属,表示传感器不致于发生破裂或材料疲乏等状况。

这种新款传感器内含80μm薄的S型微流体,连接至直径5mm的中央圆形凹槽,以及两侧圆形区域(直径2.5mm),并以液体金属共晶镓铟(eGaIn)完全填充。

该传感器采用以网版印刷的两条银电极运行经两侧圆形区域,模塑出键合至PET薄膜的软硅胶,使其得以打造出坚固且有弹性的传感器。此外,利用导电的液体金属,表示传感器不致于发生破裂或材料疲乏等状况。

在中央区域施加一个负载时,橡胶会变形,而液体金属则流入侧袋中,随负载增加而逐渐改变整组装的总电阻。要读取电路也十分简单,只要利用标准的模拟数字转换器(ADC)测量电阻变化即可,无需放大任何信号。

在其发表于《ACS Sensors》期刊的报告——“具有高度灵活性、耐用性和灵敏度的三态液体微流控触觉传感器”(Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity)中,研究人员证实S型能表现出更好的液体动力学,同时也观察到较直接微流体结构更高且更清晰的轮廓变形,显示S型微流体结构具有更高的局部负载灵敏度。

科学家并以各种不同的机械负载测试其传感器,从手指轻触到脚步踩踏——分别以穿鞋、不穿鞋或穿高跟鞋等方式进行。 三态液体微流控触觉传感器 研究人员将传感器应用于鞋中。针对脚跟碰撞或足部重踏等不同的动作,传感器分别产生特性鲜明的电反应

他们甚至开着车子辗过进行测试。为了打造其灵活性,研究人员还进行了电池弯曲试验,结果显示从-90°、-45°、+45°与+90°的弯曲都十分易于区别。
研究人员指出,透过脚步踩踏较能显示其细微差别,因为这种传感器能够辨识来自不同的步态的特定运动特性。
研究人员指出,透过脚步踩踏较能显示其细微差别,因为这种传感器能够辨识来自不同的步态的特定运动特性。

新加坡国立大学教授Chwee Teck Lim认为,这种传感器适于穿戴式装置的许多应用。他说:“我们正考虑导入商业化,并已为此发明申请专利,以及与一些潜在用户交换意见,主要来自医院和诊所。”

至于差异化以及这种新型传感器如何与其他薄膜软性传感器?Lim表示,“我们的液基传感器最具竞争优势之处在于它能实现极度的机械形变,比起固体传感器也较不至于发生塑料变形和断裂。另一项优点是我们能区隔出轻柔压力与重压的不同,而不需要进行额外的信号处理或放大。”

“第三个优点是,我们的传感器可以感测各种不同模式的负载,如弯曲、扭转、压力以及拉伸等,而其他的一些传感器只能测量一种负戴模式,例如仅能测压力,”Lim并补充说,研究人员已在其他研究发布中证实其他负戴模式了。
相关资讯
贸泽电子Mouser Talks Tech专访FIRST®创始人Dean Kamen

在这场独家专访中,Kamen深入探讨了FIRST在激发学生热情,促进科学、技术、工程和数学 (STEM) 领域职业发展方面的重要意义。

贸泽推出全新安全资源中心 为设计工程师提供数字防御知识

生成式AI正通过大规模制造个性化、语法准确而且符合情境的攻击来重塑网络钓鱼格局。

氮化镓如何重塑电机控制格局:效率、密度与响应的全面突破

本文将分析氮化镓在电机控制方案中的核心优势,揭示其如何通过提升效率,减小体积等方式,为电机驱动系统带来质的飞跃。

新能源汽车的“核心系统”:深度解析大三电与小三电技术体系

本文将从技术原理、系统架构及工程实现角度,全解剖析新能源汽车的大三电和小三电系统

从汽车电子到多元工业应用:CAN总线技术解析与发展趋势

CAN总线技术通过单一总线替代复杂布线系统,极大提高了系统的可靠性与可维护性