新型技术方案:纳米级InGaN LED实现高效率白光

发布时间:2016-07-5 阅读量:911 来源: 我爱方案网 作者:

【导读】传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。

香港大学的研究人员对于从单晶LED中取得高效率的宽带白光深具信心,他们最近发表了可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子结构的研究结果。

LED照明的神圣目标就在于以最高能效与最佳成本效益的方式实现白光,而这也一直是制造商和学术界之间最热门的讨论话题。

传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。

相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。

其他的解决方案结合了以不同峰值波长发射的多个LED芯片,然而,同样无法为真正白光带来自然连续的发光过程。

香港大学(University of Hong Kong)的研究人员则看好可从单晶LED中取得宽带白光。在最近发布于《ACS Photonics》期刊中的“宽带InGaN LED单芯片”(Monolithic Broadband InGaN Light-Emitting Diode)一文中,研究人员发表可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子阱(QW)结构的结果。

研究人员接着使用硅胶纳米粒子组合作为屏蔽层,为整个堆栈进行蚀刻,在整个LED芯片上留下纳米柱图案组合,范围包括从直径约150nm的纳米尖端到直径约7μm的微碟型共振腔。
【导读】传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。  香港大学的研究人员对于从单晶LED中取得高效率的宽带白光深具信心,他们最近发表了可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子结构的研究结果。  LED照明的神圣目标就在于以最高能效与最佳成本效益的方式实现白光,而这也一直是制造商和学术界之间最热门的讨论话题。  传统的途径包括频率向下反转、结合高能量的蓝光LED或近紫外线频段,以及具有不同波长的荧光粉。  相较于原始的发射器(以荧光粉覆盖的LED),这种途径通常以较低的量子效率模拟不完全的白光光谱。荧光粉的寿命有限也对于白光的整个产品生命周期带来负面影响。  其他的解决方案结合了以不同峰值波长发射的多个LED芯片,然而,同样无法为真正白光带来自然连续的发光过程。  香港大学(University of Hong Kong)的研究人员则看好可从单晶LED中取得宽带白光。在最近发布于《ACS Photonics》期刊中的“宽带InGaN LED单芯片”(Monolithic Broadband InGaN Light-Emitting Diode)一文中,研究人员发表可在蓝宝石基板生长高铟含量氮化铟镓型氮化镓(InGaN-GaN)量子阱(QW)结构的结果。  研究人员接着使用硅胶纳米粒子组合作为屏蔽层,为整个堆栈进行蚀刻,在整个LED芯片上留下纳米柱图案组合,范围包括从直径约150nm的纳米尖端到直径约7μm的微碟型共振腔。 1  纳米结构流程采用分散的硅珠,(a, b) 纳米屏蔽用于干式蚀刻; (c)实现随机分布的纳米尖端组合(d),接着再进行平面化*  由于生长的InGaN-GaN量子阱结构遭受晶格不匹配导致的应变影响,因而必须利用整个纳米尖点与微碟的不同应变分布。这种现象称为量子局限史塔克效应(QCSE),其蜂值波长受到应变诱导的压电场影响,从而降低了有效的隙能量,导致发光频谱的红色色移。透过InGaN-GaN QW堆栈的纳米级结构释放这一应力,可望部份缓解这种色移情形。  在大约80nm波长发射的纳米尖点,比生长构的更短,但在575nm标准波长下的相同芯片,发更大的7μm 微碟。  研究人员为单晶LED进行纳米制图,并混搭应变InGaN-GaN QW的较长波长以及应变纳米端(Nano-tips)的较短波长光源。 2  LED NT01P1 (a)无荧光粉的白光LED单芯片,结合了不同面向的米结构数组,在进行平面化(c)之前以及之后的(b)制造结构的SEM影像图  所取得的芯片可同步发射在每一纳米结构流程中随机分布的蓝光、绿光与黄光。 3 纳米结构的单晶LED特写照片显示不同的蓝、绿与黄光。整个芯片尺寸约1x1mm2  目前这一研究仍仅止于概念验证阶段,但研究人员在其研究报告中说明,他们希望能使用电子束或纳米压印等精确的纳米制图技术,进一步提高光与频色分布的均匀一致性。此外,调整纳米尖端与微碟的相对浓度,也可以在整个色域上调整发光度,从而使用多个,不同尺寸的纳米尖端(每一个都具有不同程度的应变-松弛)达到更具连续性的发光效率。
 纳米结构流程采用分散的硅珠,(a, b) 纳米屏蔽用于干式蚀刻; (c)实现随机分布的纳米尖端组合(d),接着再进行平面化*

由于生长的InGaN-GaN量子阱结构遭受晶格不匹配导致的应变影响,因而必须利用整个纳米尖点与微碟的不同应变分布。这种现象称为量子局限史塔克效应(QCSE),其蜂值波长受到应变诱导的压电场影响,从而降低了有效的隙能量,导致发光频谱的红色色移。透过InGaN-GaN QW堆栈的纳米级结构释放这一应力,可望部份缓解这种色移情形。

在大约80nm波长发射的纳米尖点,比生长构的更短,但在575nm标准波长下的相同芯片,发更大的7μm 微碟。

研究人员为单晶LED进行纳米制图,并混搭应变InGaN-GaN QW的较长波长以及应变纳米端(Nano-tips)的较短波长光源。
LED NT01P1 (a)无荧光粉的白光LED单芯片,结合了不同面向的米结构数组,在进行平面化(c)之前以及之后的(b)制造结构的SEM影像图
LED NT01P1 (a)无荧光粉的白光LED单芯片,结合了不同面向的米结构数组,在进行平面化(c)之前以及之后的(b)制造结构的SEM影像图

所取得的芯片可同步发射在每一纳米结构流程中随机分布的蓝光、绿光与黄光。
纳米结构的单晶LED特写照片显示不同的蓝、绿与黄光。整个芯片尺寸约1x1mm2
纳米结构的单晶LED特写照片显示不同的蓝、绿与黄光。整个芯片尺寸约1x1mm2

目前这一研究仍仅止于概念验证阶段,但研究人员在其研究报告中说明,他们希望能使用电子束或纳米压印等精确的纳米制图技术,进一步提高光与频色分布的均匀一致性。此外,调整纳米尖端与微碟的相对浓度,也可以在整个色域上调整发光度,从而使用多个,不同尺寸的纳米尖端(每一个都具有不同程度的应变-松弛)达到更具连续性的发光效率。
相关资讯
RSA240电流检测芯片:突破-5V~100V宽压采集的国产解决方案

在工业自动化、新能源储能及多节电池管理系统中,高精度电流检测是保障系统安全与能效的核心环节。传统检测方案常受限于共模电压范围窄、抗浪涌能力弱、温漂误差大等痛点。国产RSA240系列电流检测芯片的推出,以**-5V~100V超宽共模输入范围和0.1%级增益精度**,为高压场景提供了突破性解决方案。

TMR134x磁开关芯片:高精度液位测量的工业级解决方案

在工业4.0浪潮推动下,液位测量作为过程控制的核心环节,其精度与可靠性直接影响化工、能源、汽车等关键领域的生产安全。传统霍尔传感器受限于功耗高、温漂大、响应慢等瓶颈,难以满足智能设备对实时性与稳定性的严苛要求。多维科技推出的TMR134x磁开关传感器芯片,通过隧道磁阻(TMR)技术突破传统局限,为高精度液位监测提供新一代解决方案。

英飞凌300mm GaN技术实现突破,2025年Q4交付客户样品

英飞凌科技股份公司近日宣布,其基于300mm(12英寸)晶圆的氮化镓(GaN)功率半导体量产技术已取得实质性突破,相关生产流程全面步入正轨。根据规划,首批工程样品将于2025年第四季度交付核心客户,标志着英飞凌成为全球首家在现有大规模制造体系内实现300mm GaN工艺集成的IDM(垂直整合制造)厂商。

AI浪潮推高日本芯片设备销量,2026年有望突破5万亿日元大关

日本半导体制造装置协会(SEAJ)7月3日发布修订报告,预计2025年度(2025年4月-2026年3月)日本半导体设备销售额将达48,634亿日元,同比增长2.0%,连续第二年刷新历史纪录。2024年度销售额同比暴涨29.0%至47,681亿日元,首次突破4万亿日元大关。更关键的是,2026年度销售额预计跃升至53,498亿日元(约合5.3万亿日元),年增10.0%,成为史上首个跨越5万亿日元大关的年度;2027年将进一步增长至55,103亿日元,实现连续第四年创新高。

2025年Q2中国智能手机市场:华为以12%增速重登榜首,补贴政策缩减或成下半年变数

市场研究机构Counterpoint Research最新报告显示,2025年第二季度中国智能手机市场同比小幅增长1.5%。这一温和回升主要由华为与苹果两大品牌驱动,其中华为以12%的同比增速领跑市场,时隔四年重回季度出货量第一宝座,而vivo则以9%的跌幅成为前五厂商中唯一下滑品牌。