神奇,用ZYNQ控制人体器官培植环境

发布时间:2016-10-25 阅读量:1377 来源: 发布人:

Biostage使用可再生生物技术来培育重要的人体器官。器官培育在一个不产生排异现象的支架上完成,支架源自病人自己的干细胞。该技术被用来治疗各种危及生命的严重疾病,包括食道、支气管方面和气管肿瘤、气管创伤等当前治疗手段非常有限并且死亡率非常高的疾病。

Biostage公司使用Cellframe技术在一个生物反应器中来培育替代器官,这个生物反应器NI(美国国家仪器)的RIO电路板和模组实时控制,并且借助了LabVIEW开发环境和LabVIEW FPGA软件。在一个旋转的生物反应器中培植若干天后,再生器官就可移植到病人身上。



BiostageCellframe技术运转流程

一份新的NI案例研究解释了Biostage的研究员将他们的硬件控制平台从2012年时使用NI的互联网连接式的CompactRIO底板升级到CompactRIO控制器,最后转到Single-Board RIO(sbRIO)控制器。从sbRIO-9626到sbRIO-9606(均基于Xilinx Spartan-6 LX45 FPGA),最后选择基于Zynq的sbRIO-9607。现在公司已经统一标准使用sbRIO-9627控制器和NI Linux实时操作系统。

所有的这些硬件产品都得到NI LabVIEW的良好支持,也都支持LabVIEW FPGA,因为NI和Xilinx的支持,对Biostage而言,新的硬件更新换代也变得相对容易。当公司添加新特性到到Cellframe系统,它就可以顺利过渡到不同的平台来满足不断变化的需求。

NI的案例研究描述说:Biostage使用FPGA的性能处理解决方案中的冗余和时间敏感性控制,他们把FPGA视作一个可靠的硬件解决方案。一旦生物反应器的配置加载到FPGA中,FPGA就会独立的管理和生物反应器间的直接交互。

FPGA也会通过监测实时应用来提供生命支持,一旦出现极端异常情况就会重新启动。sbRIO-9627上FPGA面积提升已经帮助他们增加新的特性进来,这使得他们的解决方案永不过时。

相关资讯
新能源汽车的“核心系统”:深度解析大三电与小三电技术体系

本文将从技术原理、系统架构及工程实现角度,全解剖析新能源汽车的大三电和小三电系统

从汽车电子到多元工业应用:CAN总线技术解析与发展趋势

CAN总线技术通过单一总线替代复杂布线系统,极大提高了系统的可靠性与可维护性

窥见电池灵魂:BMS数据采集如何成为电动时代的神经末梢

数据采集的精度和可靠性,直接决定了整个BMS系统性能的天花板

强强联合!英伟达50亿入股英特尔

英伟达投资50亿入股英特尔股票

​温补晶振(TCXO)核心技术解析:8大关键参数决定系统时序精度​

在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。