新国标下的交流充电桩电源及信号接口解决方案

发布时间:2016-10-22 阅读量:1408 来源: 我爱方案网 作者: wenwei

传导式交流充电桩是为具有车载充电机的电动汽车提供交流电源的专用供电装置。2016年初,国家颁布了针对充电桩的新标准。本文重点介绍了新国标对交流充电桩的一些技术要求,并推荐了典型的电源解决方案。

一、新国标对交流充电桩的要求

2015年底国家发布了GB/T 20234.1-2015、GB/T 20234.2-2015、GB/T 18487.1-2015等标准。对比之前的版本,新国标修改和增加了一些对交流充电桩的要求。例如:交流充电桩的充电电流从“不超过32A”,修改为“不超过63A“;又如:在车辆接口、供电接口方面有了规定:交流充电电流大于16A时,供电接口和车辆接口应具有锁止功能,该锁止功能应符合GB/T20234.1-2015的相关要求。

另外,考虑到充电桩使用的环境及EMC方面特性,内部的辅助电源在这方面的性能与整机要求相一致,简单罗列环境条件与电磁兼容性如下:

1.1环境条件

工作环境温度:-20℃~+50℃;

相对湿度:5%~95%;

海拔高度≤2000m;

在特殊环境下,充电机的使用应在厂家和用户之间进行协商;

使用地点不得有爆炸危险介质,周围不含有腐蚀性和破坏绝缘的有害气体及导电介质。

1.2电磁兼容性

静电放电抗扰度:充电机应能承受GB/T 17626.2—2006中第5章规定的试验等级为3级的静电放电抗扰度试验,接触放电试验电压6KV,空气放电试验电压8KV;

射频电磁场辐射抗扰度:充电机应能承受GB/T 17626.3—2006中第5章规定的试验等级为3级的射频电磁场辐射抗扰度试验,频率范围80~1000MHz,试验场强10V/m,正弦波1kHz,80%幅度调制;

电快速瞬变脉冲群抗扰度:充电机应能承受GB/T 17626.4—2008中第5章规定的试验等级为3级的电快速瞬变脉冲群抗扰度试验,在输入输出端口试验电压2KV,重复频率5kHz和100kHz;

浪涌(冲击)抗扰度:充电机应能承受GB/T 17626.5—2008中第5章规定的试验等级为3级的浪涌(冲击)抗扰度试验,线-线:1KV,线-地:2KV;

电压暂降、短时中断抗扰度试验:交流充电桩在工作状态下,按GB/T 17626.11的规定,试验电压等级0%~70%,试验3次;

对于抗扰度试验,判定的标准有如下2类结果认为合格:

A类:试验时和试验后交流充电桩均能正常工作,不应有任何误动作、损坏、死机、复位现象,数据采集应准确;

B类:试验时交流充电桩可以出现短时通信中断和液晶显示瞬时闪屏等,其他功能和性能都应正常,试验后无需人工干预,交流充电桩应可以自行恢复,所有保留数据不应丢失。

二、电源解决方案推荐

充电桩内部各组成负载所需电源的要求存在一定的差异性。下面,推荐常见的供电方式如下图一所示:


控制部分推荐金升阳隔离AC/DC电源模块LH10-10C0512-02。此电源模块可输出三路电源,输出+5V给数字控制电路以及GPRS通信模块和小尺寸的显示单元供电;输出±12V给控制引导的CP供电。而隔离AC/DC电源模块LH20-10B12输出12V电压,主要给继电器单元以及电子锁供电。

整个充电桩通信部分推荐TD501D485H隔离收发模块。该产品为5V供电的485通信隔离模块,可实现充电桩内部的计量仪表(电表)的485通信隔离,将电量数据信息传递给主控电路,计算出需要收取的电费等信息,再通过GPRS将信息传到主站等设备。

当然电子锁供电也可以集成在同一个模块中去。因电子锁所需功率为瞬态功率,正常工作时可以将余留的功率给整个主控装置供电,所得的一个典型的应用方案如下图二所示:


该方案与前述方案除了主供电电源集合在一起外,在CP控制信号方面采用了WRA1212S-3WR2模块来实现隔离供电;同时在显示屏数据传输方面,通过TD501D232H隔离收发模块对RS232信号做了隔离,有效地避免了显示屏受到脉冲群等干扰。

三、设计说明

上述推荐的两个应用方案在设计方面来说,主要有三个好处:

一、辅助电源供电设计相对简单。电压需求可以灵活地配选,以切合系统中不同的负载电压要求,例如:12V、5V、±12V的电压需求;

二、EMC抗扰度高。上文推荐的金升阳LH系列AC/DC电源模块不需要增加过多的外围电路就可以达到前文所述的国标对于充电桩的EMC抗扰度要求,在电路设计方面又简化了外围参数。
三、模块电源具有小型化、散热均匀等优势,同时模块电源内部含有电子灌封料,在充电桩整机做IP防护方面,关键的辅助供电部分要求就不会那么高了。

四、总结

依据国家发改委的规划,国家电网预计到2020年,充电桩市场需求总规模将达2000亿元,这给充电桩制造企业带来良好的发展机遇。而交流充电桩相对直流充电桩来说,以其成本相对低廉,将会占有大部分市场份额,为电源行业带来一个发展的高峰期。

相关资讯
新能源汽车的“核心系统”:深度解析大三电与小三电技术体系

本文将从技术原理、系统架构及工程实现角度,全解剖析新能源汽车的大三电和小三电系统

从汽车电子到多元工业应用:CAN总线技术解析与发展趋势

CAN总线技术通过单一总线替代复杂布线系统,极大提高了系统的可靠性与可维护性

窥见电池灵魂:BMS数据采集如何成为电动时代的神经末梢

数据采集的精度和可靠性,直接决定了整个BMS系统性能的天花板

强强联合!英伟达50亿入股英特尔

英伟达投资50亿入股英特尔股票

​温补晶振(TCXO)核心技术解析:8大关键参数决定系统时序精度​

在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。