无人机1:1000航测稀少控制解决方案

发布时间:2016-10-25 阅读量:1202 来源: 我爱方案网 作者: candytang

当前,无人机航空摄影测量广泛应用于农村土地确权、电力巡线、公路、铁路工程勘测中。大比例尺航空摄影测量内业主要遵循规范为:GB/T 7930-2008  《1:500 1:1000 1:2000地形图航空摄影测量内业规范》;GB/T 23236-2009 《数字摄影测量 空中三角测量规范》。但由于无人机航测设备型号/种类多、飞行结果复杂,特别是重叠度的不同,难以给出类似于国家2008和2009两个规范明确性地指导意见。这导致现阶段大比例尺无人机航测有如下问题:像控点布设不合理导致精度不高;或为达到精度要求而大量布设像控点,导致工作量巨大,效率低下;另外还存在空三软件转点成功率低,人工干预程度高等不足。

无人机1:1000航测稀少控制解决方案


本技术方案就是为了解决1:1000航空摄影测量中的上述问题,旨在用稀少控制点方案在保证空中三角测量高精度的前提下,降低内外业工作量,并最终生成符合国家标准规范的数字线划图及数字正射影像等成果。

方案所需软硬件设备


解决流程


技术路线


1、相机畸变参数
相机检校主要为获取精确的内方位元素和畸变参数。
内方位元素包括主距f和主点偏移x0,y0。其成果直接决定内定向精度。


畸变参数包括:3个径向畸变系数k1,k2,k3,2个切向畸变系数p1,p2,非正方形比例系数a,非正交比例系数b。可以影响畸变参数改变的主要因素为:温湿度,人为拆卸,剧烈碰撞。数码相机的畸变都不可忽略,如果获取的畸变参数不准确,会导致空三转点过程中像点残差超限。因此获取准确的内方位元素和畸变参数对空三加密转点精度极为重要。



2、航线的规划
航线规划和像控点布设标准方案如下图所示:

若测区为相对规则区域,将航线覆盖范围设置为其外接四边形。无人机航线一般根据测区形状来布设,根据具体要求,航向重叠度设置为70%-85%之间,旁向重叠度在40%以上,飞行高度根据要求确定,原则上最高最低地物高差不超过相对飞行高度的1/3。若测区为条带状区域,则可划分为几个架次分批次飞完。


由于本方案采用稀少控制解决,需要飞行构架航线,即航带两头再飞两条与普通航线垂直的航线。相比传统航线模式,构架航线有效保证了整个测区的连接强度,提高了像控点的控制精度。

3、像控点布设及测量


1:1000航空摄影测量像控点可选择测区内明显地物点。选点规则:位置清晰,与周围无明显高差,不被遮挡。

以大飞机为标准,航向重叠度65%时,像控点布设规范如下表:



无人机没有明文规范,一般根据重叠距离换算,对奇数航带添加平高点,重叠度高时偶数航带可不增加像控点。这种像控点布设方案工作量巨大,且高程精度普遍不高。

本方案使用新型无人机稀少控制方案:最少只需四个控制点,分别布设在构架航线角点处。中间可根据测区情况适当增加8-16个检查平高点。经过大量实例验证,本方案完全可以满足国家规范精度要求。


野外像控点可通过RTK,全站仪等方式获取大地坐标。最终生成控制点文件和点位图。

相关资讯
新能源汽车的“核心系统”:深度解析大三电与小三电技术体系

本文将从技术原理、系统架构及工程实现角度,全解剖析新能源汽车的大三电和小三电系统

从汽车电子到多元工业应用:CAN总线技术解析与发展趋势

CAN总线技术通过单一总线替代复杂布线系统,极大提高了系统的可靠性与可维护性

窥见电池灵魂:BMS数据采集如何成为电动时代的神经末梢

数据采集的精度和可靠性,直接决定了整个BMS系统性能的天花板

强强联合!英伟达50亿入股英特尔

英伟达投资50亿入股英特尔股票

​温补晶振(TCXO)核心技术解析:8大关键参数决定系统时序精度​

在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。