ST低能耗蓝牙SOC BlueNRG-1 提高射频连接可靠性

发布时间:2016-10-25 阅读量:1456 来源: 我爱方案网 作者: candytang

日前,ST发布了其首款低能耗蓝牙Bluetooth® Low Energy无线通信系统芯片(SoC) BlueNRG-1。新产品兼备优异的能效和强大射频性能,可满足快速增长的大规模低能耗蓝牙市场的需求。



低能耗蓝牙技术是功耗受限的智慧传感器和穿戴设备、零售店导航收发器(beacon)、汽车无钥匙进入系统、智能遥控器、资产跟踪器、工控监视器、医用监视器等互联网设备的理想选择。根据ABI Research[1]预测,随着蓝牙平板计算机和智能手机市场爆发,用户与低能耗蓝牙设备通信有方便的图形接口可用,支持低能耗蓝牙的物联网产品到2021年出货量将接近14亿件,复合年增长率(CAGR)达到34%。

低能耗蓝牙必须保证高能效的工作模式,包括最常用的功耗极低的睡眠和待机模式,以最大限度延长电池续航时间。为提高广播有效覆盖率和连接可靠性,射频性能也必须十分出色。意法半导体推出了新款BlueNRG-1可程序设计系统芯片,能够满足这些应用对射频性能和功耗要求。

BlueNRG-1内部射频收发器在应用设备常用模式下能效极其出色,例如,零售店导航收发器的常用模式是,设为短暂数据通信连接,向顾客智慧手机推送特价商品信息。BlueNRG-1能够在省电和工作两种模式之间快速切换,将电池续航时间从几个月延长至几年。此外,射频输出功率提升到+8dBm,确保通信质量清晰可靠,取得最高能效,甚至在噪声环境中表现同样出色。



意法半导体仿真器件和MEMS事业群执行副总裁Benedetto Vigna解释:“在零售业、互联网家庭、汽车、工业、医疗或电子支付领域,许多新应用能否成功与用户体验好坏关系重大,因此,我们需要高能效的低能耗蓝牙解决方案。对于物联网设计人员,BlueNRG-1击中了问题的要害:与现有解决方案相比,新产品是一个单片解决方案,既没有超出技术要求,成本也不高,还能延长电池续航时间,提供优异的连接可靠性,拥有最佳的射频性能。”

除高能效和低功耗外,BlueNRG-1还提供诸多增值特性,让设计人员的工作生活更轻松。这些特性包括有助于简化声控设计的专用数字麦克风输入和适用于智能照明;汽车应用(例如,无钥匙进入启动或车辆诊断装置)的105°C最大工作温度;支持最新的4.2版低能耗蓝牙规范,确保应用设计可以使用先进的隐私和安全保护技术。

BlueNRG-1计划在2016年7月底量产,采用两种封装方式。BlueNRG-132采用5mm x 5mm QFN-32封装;BlueNRG-134采用2.7mm x 2.6mm WLCSP-34封装,适用于空间有限的应用。

技术细节:

BlueNRG-1单核系统芯片的产品亮点是32MHz 32位ARM® Cortex®-M0内核和充足每毫瓦性能。160Kb片上闪存用于应用程序和数据存储,还能升级ST低能耗蓝牙固件栈。ST还 整合了经过市场检验的超低功耗设计,包括支持唤醒和睡眠快速转换、绝无仅有的不足1µA的待机电流。

BlueNRG-1配备意法半导体的经过市场检验的低能耗蓝牙固件栈,采用立即可用的链接库文件格式。创建时库连结可去除固件栈中无用代码,确保内存的使用效率。新产品还提供预认证的医用设备、接近监视等类型蓝牙应用规范,以及开发工具和支持iOS®和Android™应用开的技术文档。

系统外设可简化设计,节省外部器件。重要外设包括10位模拟/数字转换器(ADC)、SPI和I2C主/从控制器、UART和多达15个用户可配置I/O输入输出端口,具体埠数量取决于封装类型。

BlueNRG-1可直接连接意法半导体通用的单片平衡不平衡转换器(balun),在平衡的收发器信号与单端天线信号之间切换。作为空间利用率较高的QFN产品,平衡不平衡转换器利用意法半导体的玻璃层上IPD制造工艺,单片集成9个无源器件,从而可以节省空间,简化设计,加快产品研发周期,增强射频性能。

采用BlueNRG-1的设计人员可以使用功能丰富的开发生态系统,包括有API的软件开发工具(SDK)、传感器驱动软件、例程等。认识到低功耗在低能耗蓝牙应用中的重要性,意法半导体在生态系统中还提供一个电流评测工具,帮助评估变化因素对电流大小的影响,例如发射输出功率、主/从睡眠时钟精度、RAM内容保留、连接广播或扫描间隔、数据长度和直流-直流转换器启动。
相关资讯
新能源汽车的“核心系统”:深度解析大三电与小三电技术体系

本文将从技术原理、系统架构及工程实现角度,全解剖析新能源汽车的大三电和小三电系统

从汽车电子到多元工业应用:CAN总线技术解析与发展趋势

CAN总线技术通过单一总线替代复杂布线系统,极大提高了系统的可靠性与可维护性

窥见电池灵魂:BMS数据采集如何成为电动时代的神经末梢

数据采集的精度和可靠性,直接决定了整个BMS系统性能的天花板

强强联合!英伟达50亿入股英特尔

英伟达投资50亿入股英特尔股票

​温补晶振(TCXO)核心技术解析:8大关键参数决定系统时序精度​

在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。