发布时间:2017-05-27 阅读量:5113 来源: 我爱方案网 作者: candytang
无人机的特性
a) 稳定
无人机应该要稳定,不可无预警突然震动、摇晃或倾斜,否则就会失去平衡并坠毁。
无人机的动作要非常精确。至于动作可能指距离、速度、加速、方向与高度。
无人机要能抵抗下雨、灰尘、高温等环境状况。而且不止外部材质,无人机内部所使用的电子零件也要如此。
无人机将会变得越来越轻,因此如何确保超低功耗以尽量缩小电池尺寸就显得尤为重要。低功耗技术的崛起,已使得无人机技术得以普及化。
环境传感技术逐渐崛起,成为无人机最关键的发展领域之一。现在的无人机都具备好几种传感器以监测环境。收集到的资料可用在各种应用,例如气象监测、农业等用途。
传感器在无人机里所扮演的角色
核心传感器
加速度计
加速度计是用来提供无人机在XYZ三轴方向所承受的加速力。它也能决定无人机在静止状态时的倾斜角度。 当无人机呈现水平静止状态,X轴与Y轴为0克输出,而Z轴则为1克输出。 地球上所有对象所承受的重力均为1克。若要无人机X轴旋转90度,那么就在X轴与Z轴施以0克输出,Y轴则施以1克输出。倾斜时,XYZ轴均施以0到1克之间的输出。相关数值便可应用于三角公式,让无人机达到特定倾斜角度。
陀螺仪
陀螺仪传感器能监测三轴的角速度,因此可监测出俯仰(pitch)、翻滚(roll)和偏摆(yaw)时角度的变化率。即使是一般飞行器,陀螺仪都是相当重要的传感器。角度信息的变化能用来维持无人机稳定并防止晃动。由陀螺仪所提供的信息将汇入马达控制驱动器,通过动态控制马达速度,并提供马达稳定度。 陀螺仪还能确保无人机根据用户控制装置所设定的角度旋转。
磁罗盘
正如名称所示,磁罗盘能为无人机提供方向感。它能提供装置在XYZ各轴向所承受磁场的数据。接着相关数据会汇入微控制器的运算法,以提供磁北极相关的航向角,然后就能用这些信息来侦测地理方位。
为了算出正确方向,磁性数据还需要加速度计提供倾斜角度数据以补强信息。有了倾斜数据加上磁性数据,就能计算出正确方位。
气压计
无人机传感器的重要特点
运算法所扮演的角色
要将原始的传感器数据转换成有意义的使用案例,软件数据库扮演了相当重要的角色。 算法可扩大传感器功能,使其超越原本已知范围。运算法还能结合来自不同传感器的输入,产生具备情境感知特色的输出。
特定应用传感器
湿度传感器
MEMS麦克风
无人机的联网功能
Bluetooth Smart低功耗蓝牙技术(BLE)
Bluetooth Smart又称为低功耗蓝牙(Bluetooth Low Energy,BLE),能提供无人机低功耗的联网功能。 这种技术适合低阶机种,特别是玩具无人机。 它能让无人机和做为控制装置的智能手机、平板、手提电脑或专用远程控制器进行双向通讯。低功耗蓝牙能让无人机具备绝佳的电池续航力,这是使用Wi-Fi、传统蓝牙(Classical Bluetooth)等传统无线技术所不可能达到的。
低功耗蓝牙使用的是2.4GHz免费授权ISM频段。相关标准由蓝牙技术联盟(Bluetooth SIG)负责管理,并支持各大智能手机品牌。
低功耗蓝牙装置有两种主要做法:
a. 网络处理器
b. 系统芯片(SoC)
RF sub-1GHz
以下为各国所提供的免费频段:
sub-1GHz频率的好处是这些频段相对较为安静、距离较长且电流消耗量极低。 缺点是无法直接提供智能手机联机功能,而且并不是每个地方都能使用。
Sigfox是采用sub-1GHz频率的一种订阅制低功耗广域网(LPWAN)服务。 Sigfox能直接链接电信基础架构,然后转接上云端。 它的连网功能有效范围可达数公里之远。 用在无人机时,Sigfox可追踪并将传感器数据传送到云端。它是一种直接链接电信基础架构的低数据率技术,因此一般预料将无法取代可以直接进行控制的联网选项,例如低功耗蓝牙,还有RF sub-1GHz直接点对点联机。
开发平台
无人机等新兴应用程序的崛起,主要是由创新企业与年轻一代的工程师所带动。此外因为市场演化速度加快,成功的机率绝大部分取决于花费的时间与成本。因此,一个价格合理、弹性、生产就绪且可随时扩充的开放原始码平台环境,就显得非常重要。
意法半导体已推出STM32开放式开发环境平台,让设计人员可以利用意法半导体的微控制器、传感器、射频与模拟产品,以非常具有弹性且价格合理的方式开发产品。这个硬件平台还提供搭配的软件驱动程序、中间件函式库与应用程序,还有相关的Android与iOS程序代码。
用户也可以透过一份简单的计算机授权协议,存取各种先进数据库。一旦经过平台测试,设计人员就能开发自己专用的印刷电路板,并加载他们在平台上开发的固件。用户只有在想要测试专用电路板时,才必须签署数据库的生产授权。
SensorTile
结论
英伟达投资50亿入股英特尔股票
在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。
本文将深入剖析汽车级BMS的核心技术优势及其广泛的关键应用场景
工业相机是根据工业检测的特殊需求进行深度优化与强化的专业设备
Renesas Electronics RA8P1微控制器可提供超过7,300 CoreMarks的CPU性能,以及在500 MHz时256 GOPS的AI性能