大唐移动5G大规模多天线测试解决方案

发布时间:2018-05-11 阅读量:1198 来源: 我爱方案网 作者:

随着3GPP 5G 标准NSA方案的正式发布,5G NR相关商用产品的开发工作已经加快,2018年将是5G标准确定和商用产品研发的关键一年。当前,5G正处于标准确定的关键阶段,国际标准组织3GPP将于今年6月份完成5G SA第一版本国际标准。我国于2016年初率先启动了5G研发和试验,目前已经进入第三阶段研发试验,将推动5G系统设备基本达到预商用水平。

作为5G的关键技术之一,大规模多天线技术,是在基站收发信机上采用超大规模天线阵列(比如数百个天线或更多)实现了更大的无线数据流量和连接可靠性。相比于传统的单/双极化天线及4/8通道天线,大规模天线技术能够通过不同的维度(空域、时域、频域等)提升频谱效率和能量的利用效率;3D赋形和信道估计技术可以自适应地调整各天线阵子的相位和功率,显著提升系统的波束指向准确性,将信号强度集中于特定指向区域和特定用户群,在增强用户信号的同时可以显著降低小区内干扰、邻区干扰,是提升用户信号SINR的绝佳技术。

如何评价大规模多天线技术,针对协议上有关大规模多天线技术的设计及算法,采用什么样的测试指标和测试方法;怎样衡量大规模天线系统整体性能,大规模量产时整体的系统怎样验证;大规模天线系统在不同应用部署场景下,各种场景下性能如何验证;都是需要从测试角度充分考虑的问题。凭借在5G技术及测试领域的积累和优势,大唐移动在大规模多天线测试方面取得了较多的进展。

协议设计测试

在5G NR协议中为了提高覆盖的性能在不同的传输信道定义了不同的下行导频,针对不同用户使用不同的DMRS,同时定义了多种多端口CSI-RS专门用于信道质量测量和预编码码本的计算。在上行信道也采用相同的思想,定义不同用户的DMRS和多端口SRS用于信道质量的测量和预编码码本的计算。天线数增多后,业务信道的覆盖通常能满足要求,而控制信道的能力并不会随着天线数增多而增强,因此控制信道的覆盖将会成为系统性能的瓶颈。在NR系统中,针对控制信道引入了波束扫描增强覆盖的技术。在大规模多天线中,需要选择合适的波束扫描的宽度和频率,进行波束管理和波束跟踪。在不同用户位置和信道环境下,需要验证基站采用何种码本发送和接收,采用发送几端口导频才能使用户之间干扰很小,导频占用开销尽量少,频谱效率最优。针对上述问题,大唐移动提出了对应的测试策略。

1.进行上行导频和预编码测试,通过移相系统或者信道模拟系统,远中近点用户构造不同用户间干扰及多径信道对不同端口的SRS发送方案和上行预编码版本的计算,进行导频开销、码本计算准确性测试。
2.进行下行导频和预编码测试,验证不同端口的CSI-RS发送方案和下行预编码码本的计算,进行下行测量导频开销、码本计算准确性测试。
3.进行波束扫描的测试,通过移相系统或者信道模拟系统,模拟用户的不同位置和不同的运动方向,水平+垂直运动,确认不同的用户接收到理论应该接收的波束,同时进行覆盖增强的增益的测试。

关键算法性能测试

在现有的一体化系统的架构下,大规模多天线系统的基站研究的方向主要包括:基站天线架构设计、物理层信号检测、物理层信道估计;MU-MIMO配对算法、用户调度和资源分配策略等。随着天线数的增多,大规模多天线的性能将会趋于平缓,天线趋于很多时,信道之间趋于正交,此时可以使用多用户复用(MU-MIMO)。MU-MIMO技术的核心是信道估计和多用户配对算法。快速有效的信道检测与估计;根据场景和应用,选择合适的多用户配对算法进行物理资源的调度和资源分配。针对以上这些关键算法的研究,需要进行相应的验证测试。

首先,需要进行天线校准测试。为了实现精确波束赋形,射频信号路径间的相位差须小于±5°。通过使用移相器或者信道模拟器对大规模天线的所有射频通道进行校准结果的验证。

其次,需要进行干扰抑制性能测试。为了降低用户之间的干扰,针对给每个用户发送的赋形信号之间干扰要尽量小,基站需要进行干扰抑制,在不同信道场景不同用户位置的情况下,进行干扰抑制的性能测试。

最后,需要多用户配对性能测试。通过连接信道模拟器,在不同信道场景不同运动速度好中差点多用户同时存在情况下,选择合适的用户之间进行配对,进行吞吐量最大化的多用户配对性能测试。

大规模天线系统整体性能测试

对于大规模天线系统,目前普遍采用的方式是射频单元和信号辐射单元合为一体的有源天线。对于在频段范围6 GHz以下的时候,波长相对较大,各射频单元之间的间距还比较大,可以采用传统的传导方式进行测试,但是针对有源天线整体的测试,还是需要进行一体化的OTA测试。对于在频段范围大于6 GHz的毫米波频段,由于波长很小,各射频单元的间距很小,同时射频单元与辐射单元都集成在一起,不能再使用传统的传导方式进行测试,只能进行OTA测试。

通过OTA的方式进行系统的业务性能测试,验证通过空口OTA传输,经过信道模拟后,在不同信道场景多用户同时存在情况下,系统的整体业务性能,对系统整体性能和覆盖不断进行优化和测试验证。
对于大规模有源天线的生产测试,也主要采用OTA的方式,包括辐射测试、波束测试和收发信机功能测试,例如所有收发信机打开时的误差矢量幅度(EVM)测量。可高效快速的验证产品是否合格,节约测试时间,节省测试成本。

不同场景的性能测试

大规模多天线系统主要的部署场景包括:宏覆盖、微覆盖和高层覆盖。宏覆盖场景基站覆盖面积较大,用户数多;微覆盖场景主要针对热点区域,比如大型赛事、演唱会、交通枢纽等用户密集度高的区域,覆盖面积较小,用户密度高;高层覆盖场景主要是通过位置相对较低的基站对高层楼宇提供覆盖,用户呈现3D的分布,需要基站能够支持垂直方向的覆盖,进行3D的赋形。同时还会存在郊区覆盖或其他无线回传场景。

对不同部署场景的验证,在外场环节则可以直接通过真实组网进行。而在实验室环节主要是通过构造不同的信道环境,模拟不同场景。使用信道模拟系统模拟基站和用户的不同位置及角度以及传播参数,比如选择Uma场景还是Umi场景、是LOS还是NLOS传播、用户位置是呈水平分布还是水平+垂直分布等,还需要考虑用户分布密度、运动速度等等。通过对不同部署场景的构造,进行不同场景业务性能的验证,达到对于外场应用场景的实验室测试覆盖。

随着网络的持续演进,天线阵子与射频单元的深度融合,大规模有源多天线系统将是未来发展的主流,一体化测试和空口测试将会成为未来测试的演进方向。未来,大唐移动将持续发挥5G技术及测试优势,积极助推5G快速发展。


方案超市都是成熟的量产方案和模块,欢迎合作:

STM32F207测试程序升级
设备自动化测试方案
LCR测试模块方案


快包任务,欢迎技术服务商承接:

NB-IOT环境检测项目 预算:¥20000
颜色识别器转换RGB准确算法 预算:¥5000
天线设计 预算:¥5000


>>购买VIP会员套餐

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"