谷歌开源NSL:用于图形数据的TensorFlow机器学习框架

发布时间:2019-09-5 阅读量:624 来源: 智东西 发布人: Jane

智东西消息,谷歌今天新推出了其神经结构化学习(NSL)开源框架,能用于通过图形和结构化的数据训练神经网络。

 

不论经验深浅,机器学习从业者都可以将NSL与TensorFlow机器学习平台配合使用。NSL可以制作计算机视觉模型、执行自然语言处理(NLP)、以及利用医疗记录或知识图等图形数据集运行预测。

 

TensorFlow是谷歌开源的用于数值计算的开源软件库,用于机器学习和深度神经网络方面的研究。TensorFlow可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算。

 

一、应对数据匮乏,提高模型精度

 

TensorFlow工程师今天在博客中说:“在模型训练期间,通过NSL的结构化信号,开发人员能够获得更高的模型精度。特别是在标注数据量相对较小时,它的作用就更大了。”

 

“同时,结构化信号训练也可以带来更强大的模型,这些技术已被谷歌广泛应用于提高模型性能,如学习图像语义嵌入(Image Semantic Embedding)。”

 

二、简化编程工作,五行代码可完成建模

 

NSL可以通过监督、半监督或无监督学习对训练期间的图形信号进行正规化的建模。在某些情况下,五行代码就能完全搞定。

 

另外,新框架还可以帮助开发人员处理数据和API(应用程序编程接口)的工具,使他们在项目中使用更少的代码完成对抗训练。

 

今年4月,谷歌云为结构化数据引入了其他解决方案,如BigQuery连接表和AutoML Tables。另外,上周谷歌AI开源了SM3,这是一个针对BERT等大型语言理解模型的优化工具。

 

文章来源:VentureBeat

相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。