发布时间:2022-05-5 阅读量:887 来源: 我爱方案网整理 发布人: Aurora
对工程师而言,使用一台仪器就能跨越多域(时域、频域及调制域)查看信号,并同时分析多个不同类型的测量,这在复杂的5G系统测试中非常实用,因为在5G系统中数字信号、模拟信号和RF信号彼此交互。
尽管5G系统开发时已经做了大量的工作,但科学家和工程师仍面临着许多挑战,包括:
• eMBB (增强移动宽带)收发机实现问题,包括高效实现应用的信道编码(LDPC和Polar码)、收发机设计的能效、大尺寸FFT的OFDM和DFT扩展OFDM信号强大的同步方法。
• 考察V2X和遥控通信系统使用的超可靠URLLC (超可靠低时延通信)传输方法,包括高效通信道编码、可靠的接入无线资源以及收发机设计。
• 考虑收发机在毫米波范围通信中实现的具体问题
• massiveMIMO结构和算法
• mMTC (海量机器型通信,如物联网)使用的能效传输、同步和多种接入方法
• mMTC调制和编码
• 感知无线电在5G中的应用
关联模拟信号、数字信号和RF信号的根本原因
5G系统综合依赖数字信号、模拟信号和RF信号。今天,RF功放同步、增益和定时特点测试必须与现代控制接口结合在一起,如采用MIPI的RF前端控制接口 (RFFE)。
能够跨多个域分析信号对查找干扰、毛刺、杂散信号、跌落及其他错误至关重要。
在本文中,我们将展示宽带RF放大器典型的5G系统调试和验证场景。
测试设置
为了展示使用多域示波器分析RF放大器性能的优势,我们使用泰克MSO6B系列示波器作为我们的采集硬件。
我们的被测器件是Mini Circuits的GVA-123+,这是一种小型RF放大器,但它演示了用户设备和基站应用典型的测量问题。
我们配置泰克AWG70000B任意波形发生器作为我们的信号源,在3.5 GHz中心频率生成单个5G NR载波,带宽为100 MHz。它是一个上行信号,30 kHz副载波间隔(SCS),256-QAM,11.5 dB OFDM PAPR。
AWG调节为250 mV ~ 500 mV峰峰值信号,约为–11 ~ –17 dBm合成平均功率。
我们使用耦合器(ZDC-10-0123),在示波器通道1上捕获输入信号。吉时利源测量单元(SMU)为被测器件供电。
我们还在示波器通道6上增加了一只电流探头,测量放大器吸收的电流。
在MSO6B示波器上,我们运行SignalVu VSA软件,装有5G NR选配插件,我们把它配置成分析示波器通道1捕获的信号。
测量实例
作为实例,我们将看到放大器获得良好的读数,在RF输入上开始触发。
图3. 在这个测量中,星座图中显示的EVM与预期相符。
然后我们在引入干扰时会突然看到变化,我们捕捉到高失真时点,这是什么引起的呢?
图4. 在这个测量中,EVM高于预期。
在上面两个截屏中可以看到,星座图中的5G EVM在好和坏之间脉冲波动。我们可以看下功率相对于时间画面,也可以看到功率有时会跌落。
因此,我们看到所有RF域指标都显示出了问题,我们想进一步了解根本原因。
您怀疑这与电源有关,如果使用的是传统VSA,您会不知所措,只能不断地猜测。而MSO6B不同,它可以同时查看模拟信号、数字信号和RF信号,所以我们可以关联到根本原因。
如果我们看一下通道6上测量信号的电流探头和通道5上的RF输出,我们可以看到电流在周期性下跌。
图5. 在这个采集中,电源传送48 mA (通道6, 蓝色),功放的输出(通道5, 橙色)是标称值。
图6. 在这个采集中,电源传送22 mA (通道6, 蓝色),功放的输出(通道5, 橙色)已经下跌。
所以我们改变视角,在时域中触发电流,而不是在频域中触发RF脉冲。为此,我们将把触发源变成通道6上的电流探头,因为我们知道正确操作发生在47 mA,所以我们把触发点设置在43 mA,在下降时捕捉信号。我们设置成触发电流边沿,而不是脉冲。
图7. 触发设置成捕获电流下降,以统一采集低电流情况。
现在我们把RF下跌原因与示波器关联起来,在返回SignalVu时,我们现在可以捕捉电流开始下跌的时点。
图8. 在触发低电流情况时,我们在星座图中一直看到高EVM。
这里,我们看到电流与示波器屏幕上的RF性能的跌落完美相关。这足可以确认,我们已经触发电流下跌,不再会有闪烁的星座图或EVM画面,我们可以更好地看到实际问题。您可以看到,我们的EVM一直很差,因为我们已经触发了故障时点。
现在我们看一下在电流落在规范内时是否触发,看一下RF测量会发生什么情况。为此,我们只需把触发方向变成上升,现在可以捕获电流落在规范内的时点。在示波器应用中,我们的RF能量如预期那样恢复,看一下SignalVu VSA应用,捕获的每个5G信号都满足规范。只需按几下按钮,就可以把触发设置成捕获电流提高,在电流恢复正常时一直采集信号。
图9. 触发电流的上升沿,确定电流恢复正常的测量时点。
图10. 在以正常电流获得测量时,EVM一直落在规范内。
在电流不符合规范时,我们的RF输出和EVM也落在规范外。所以我们把RF性能下跌的原因与电源电流的周期下跌关联起来了。
在这个简单的演示中,我们使用SMU步进的提高和降低电流。作为5G设计人员,大家可能知道电流变化更多的底层原因,比如DPD算法或系数加载错误。
通过基于示波器的解决方案,我们还可以测量和计算精确的放大器功率系数指标,比如功率附加效率(PAE)。
这个器件没有数字总线,如果有,我们可以触发数字总线,把问题与数字总线行为关联起来。
泰克解决方案摘要
同步多通道频谱分析和时域波形加快了5G调试速度。5G系统综合依赖数字信号、模拟信号和RF信号。能够跨多个域分析信号对查找干扰、毛刺、杂散信号、跌落及其他错误至关重要。
在4系、5系和6系MSO示波器中,每个输入背后都是定制ASIC内部的12位ADC。每个ADC沿着两条路径发送高速数字化数据。这种方法可以独立控制时域和频域采集,可以同时优化给定信号的波形视图和频谱视图。这种独特的频谱视图功能可以在时域、RF和数字域中实现同步测量,支持最多8条通道。
MSO6B支持最高10 GHz的频率范围,支持最高2 GHz的分析带宽,能够直接测量Sub 6 (FR1) 5G信号。您可以在线了解更多信息:
• 5G测试
• MSO6B混合信号示波器
• 频谱分析仪软件
随着汽车电子化、智能化加速,车载系统对ESD(静电放电)防护的要求日益严苛。虹扬电子推出的车规级ESD保护二极管AH05C325V0L,采用SOT23封装,符合AEC-Q101标准,专为CAN总线、车身控制单元(BCU)及电子控制单元(ECU)等场景设计。其核心特性包括80W浪涌吸收能力、5V反向工作电压、单向电流设计,以及低漏电流和高抗静电能力(±30kV接触放电),为敏感电子元件提供高效防护。
全球显示面板核心元器件市场呈现企稳态势。根据TrendForce最新研究报告显示,2023年第一季度面板驱动IC产品均价环比下降幅度收窄至1%-3%区间,第二季度虽仍存在价格下行压力,但降幅预计将控制在2个百分点以内。这标志着自2020年疫情引发的剧烈市场波动后,驱动IC价格曲线首次出现明显筑底信号。
在全球5G网络部署与边缘计算需求井喷的背景下,易飞扬创新推出基于O波段的100G QSFP28 DWDM光模块,直击城域网络升级痛点。该产品通过零色散传输架构与硅光集成技术,突破传统C波段方案在中短距场景下的性能瓶颈,以低于3.5W的功耗实现30km无补偿传输,同时兼容开放光网络架构。据行业测算,其部署成本较同类方案降低40%,为5G前传、分布式AI算力互联及绿色数据中心建设提供了高性价比选择,或将成为运营商边缘网络改造的关键技术引擎。
在全球能源转型与欧盟新电池法规(EU 2023/1542)的驱动下,旭化成微电子(AKM)于2025年2月正式量产AP4413系列充电控制IC,以52nA超低功耗、94.8%充电效率及多电压适配等核心技术,重新定义小型设备供电逻辑。该产品通过电容器预充电机制破解完全放电恢复难题,并凭借动态电压调节算法兼容光能、振动等微瓦级能源输入,显著优于TI、ADI等国际竞品。面对国产替代窗口期,AP4413依托BCD工艺与专利壁垒抢占先机,有望在智能家居、工业传感等千亿级市场替代传统一次性电池方案,成为环保供电赛道的标杆级解决方案。
作为全球电子元器件分销领域的领军者,贸泽电子始终以"技术赋能创新"为核心战略,通过构建覆盖1200余家原厂的供应链网络,为工业自动化、汽车电子、智慧农业等前沿领域提供关键技术支持。2025年第一季度,公司新增物料突破8,000项,其中多项产品体现了行业技术演进的三大方向: