模数转换器在高精度数据采集系统的应用方案

发布时间:2024-12-20 阅读量:6404 来源: 发布人: lina

【导读】市场对工业应用的需求与日俱增,数据采集系统是其中的关键设备。它们通常用于检测温度、流量、液位、压力和其他物理量,随后将这些物理量对应的模拟信号转换为高分辨率的数字信息,再由软件做进一步处理。此类系统对精度和速度的要求越来越高,这些数据采集系统由放大器电路和模数转换器(ADC)组成,其性能对系统具有决定性的影响。


市场对工业应用的需求与日俱增,数据采集系统是其中的关键设备。它们通常用于检测温度、流量、液位、压力和其他物理量,随后将这些物理量对应的模拟信号转换为高分辨率的数字信息,再由软件做进一步处理。此类系统对精度和速度的要求越来越高,这些数据采集系统由放大器电路和模数转换器(ADC)组成,其性能对系统具有决定性的影响。

然而,ADC的输入驱动器也会影响整体精度,该驱动器用于缓冲和放大输入信号。此外,还必须增加偏置信号或生成全差分信号,以覆盖ADC的输入电压范围并满足其共模电压要求,在此过程中不得改变原始信号。可编程增益仪表放大器(PGIA)通常用作输入驱动器。在本文中,我们提出了一种输入驱动器和ADC的组合,通过这种组合可以实现非常精确的转换结果,从而构建高质量的数据采集系统。

例如,LTC6373就是一款适用于高精度数据采集系统的PGIA,除了全差分输出,它还具有高直流精度、低噪声、低失真(见图2)以及4 MHz的高带宽,增益为1/4~16。ADC可以通过它直接驱动,因此适合许多信号调理应用。

图1中的电路显示了使用LTC6373来驱动精密ADC的示例,ADC是具有1.8 MSPS的20位分辨率的AD4020。


模数转换器在高精度数据采集系统的应用方案
图1. 驱动精密ADC的电路示例。


在该电路中,LTC6373在输入端和输出端直流耦合,因而不需要使用变压器来驱动ADC。增益可通过引脚A2/A1/A0在0.25 V/V至16 V/V 之间进行设置。在图1中,LTC6373采用差分输入至差分输出配置和±15 V对称电源电压。或者,输入也可以是单端输入,而输出仍然是差分输出。

在图1中,输出共模电压通过VOCM引脚设置为VREF/2。这样就可实现LTC6373的输出电平转换。LTC6373的每个输出在0 V至VREF之间变化,因此在ADC输入端有一个2× VREF幅度的差分信号。LTC6373的输出端和ADC输入端之间的RC网络形成一个单极点低通滤波器,它可降低在ADC输入端切换电容时产生的电流毛刺。同时,低通滤波器限制了宽带噪声。


模数转换器在高精度数据采集系统的应用方案图2. 使用LTC6373驱动AD4020的SNR(左)和THD(右)性能。


图2显示LTC6373的信噪比(SNR)和总谐波失真(THD),其在整个输入电压范围(10V p-p)内驱动AD4020 SAR ADC(高阻态模式)。在吞吐量为1.8 MSPS,滤波器电阻(RFILTER)为442 Ω时可获得比较满意的效果。在1 MSPS或0.6 MSPS时,制造商建议RFILTER为887 Ω。

LTC6373可驱动大多数具有差分输入的SAR ADC,不需要另外增加 ADC驱动器。但是,在某些应用中,在LTC6373和精密ADC之间可以使用单独的ADC驱动器来进一步提高信号链的线性度。

结论

图1中所示的电路针对快速、高精度数据采集系统进行了优化。因此,LTC6373的出色特性有助于对传感器输出信号进行信号调理。借助在线工具ADI Precision Studio,特别是其中包含的ADC驱动器工具,ADI公司可以为此类放大级、滤波器和线性电路设计提供更多支持。


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。




我爱方案网


推荐阅读:

探索体外除颤器中电容器的关键作用

自动化测试仪与编码器监测实用指南

深入剖析热插拔控制器中的寄生振荡现象

基于炬芯科技产品的蓝牙音箱方案

集成式紧凑型CAN FD系统基础芯片解决方案,专为空间受限应用而设计

相关资讯
英伟达或将2月份开始向国内出货H200芯片!

英伟达计划2月开始向中国发货H200芯片!

大疆受限!美国FCC将所有非美国制造的无人机列入“受管制清单”

美国FCC将大疆以及所有外国制造的无人机及其零部件列入一份被认定“对美国国家安全构成不可接受风险”的企业清单

国产光刻胶新进展:两款高端晶圆光刻胶通过国内主流晶圆厂验证并获得订单

鼎龙股份凭借多年技术积累,在KrF与ArF高端晶圆光刻胶领域取得实质性突破,已建成从核心原料到成品的全流程自主制备体系,两款高端晶圆光刻胶通过国内主流晶圆厂验证并获得订单。

突发!一家10年电子厂全员放长假!

惠州富丽电子有限公司宣布自2024年12月12日起全员放假至2026年5月31日

官方回应:南京多地导航系统突发异常原因

近日傍晚,南京市河西、鼓楼、江心洲等多地网友发现高德、百度和苹果地图多个常用导航软件系统突发异常。