发布时间:2025-01-10 阅读量:4217 来源: 发布人: lina
【导读】步进电机是需要运动控制的工业系统中的重要组成部分。它们依靠电机驱动来解码脉冲输入并生成输出电流。良好的控制系统使用特定的算法为电机绕组产生电流,以实现步进电机旋转的增量。该算法控制速度、位置、步长分辨率和效率。脉宽调制 (PWM) 和正弦控制等控制方法可生成运动控制所需的电流。
步进电机是需要运动控制的工业系统中的重要组成部分。它们依靠电机驱动来解码脉冲输入并生成输出电流。良好的控制系统使用特定的算法为电机绕组产生电流,以实现步进电机旋转的增量。该算法控制速度、位置、步长分辨率和效率。脉宽调制 (PWM) 和正弦控制等控制方法可生成运动控制所需的电流。
脉宽调制的工作原理
PWM 是一种用于调节传递给电机等负载的电量的控制方法。这种方法改变了电脉冲的宽度,这对于电机控制至关重要。
在PWM中,微控制器、定时器或其他电路生成数字信号,通常是方波。产生的信号由驱动电路放大,然后将其发送到负载。输送到负载的功率取决于脉冲宽度。
占空比用于改变数字信号(关闭)的脉冲宽度。脉宽调制器通过将参考电压与斜坡电压进行比较来控制脉宽,通常用于调整占空比。
图 1. PWM 信号是原始信号(虚线)的实线方波。图片由 Bob Odhiambo 提供
改变 PWM 信号的占空比可以调整提供的功率以实现控制,使其成为步进电机的理想控制方法。
PWM 信号的类型
有两种不同类型的脉宽调制 信号。
单端脉宽调制。 在单端脉宽调制中,微控制器生成具有变化占空比和固定频率的方波信号。该频率决定了发送脉冲的速率。脉冲的宽度就是其占空比。可以改变周期来定义脉冲处于高电平的时间相对于总周期时间的百分比。
差分脉宽调制。 在这种类型的 PWM 中,占空比由两个波形控制。一种是具有变化幅度和相位的调制信号,另一种是占空比控制波形。使用占空比生成的波形基于调制信号,并使用模拟乘法器进行组合。这种类型的 PWM 用于电机控制应用中以实现控制。
占空比计算
占空比是脉冲宽度与周期的比率,对于控制步进电机信号至关重要。
图 2.脉冲宽度调制、幅度、脉冲宽度和周期对于计算脉冲占空比至关重要。图片由 Bob Odhiambo 提供
要计算占空比,请使用以下公式:
[占空比,周期=frac{Ton}{Ton+Toff} imes 100\%]
其中Ton表示设备打开或活动时的情况,Toff表示设备关闭或不活动时的情况。
Ton 和 Toff 也可以被视为 PWM 信号的高点和低点。
例如:
考虑一个设备在 10 秒内打开 2 秒然后关闭 8 秒。占空比可由下式确定
[任务,周期=frac{2}{(2+8)} imes100\%=20\%]
该设备的占空比为 20%,使其有 80% 的总时间处于非活动状态。
正弦控制的工作原理
正弦方法是控制输送到步进电机的电压的另一种方法。它很自然地做到这一点,就像交流电源中的正弦波形一样。这种方法比 PWM 更平滑、更。
在正弦控制系统中,波形发生器生成具有固定幅度和频率的正弦波。对于使用该波的步进电机控制,电机位置的测量值被馈送到控制电路中以与正弦波进行比较。
获取电机测量值并将其与正弦波参考进行比较后,通过修改 PWM 信号中脉冲的宽度和时序来调整输送到电机的功率。该信号由驱动电路放大并发送至电机以驱动电机。
正弦控制在控制步进电机方面更加高效和,并且振动和噪音。这种类型的控制可用于步进电机、功率转换器和逆变器。
比较 PWM 和正弦控制
下面是正弦控制和 PWM 控制的比较。
效率: 正弦控制可以更有效地提供电力,尤其是在高速运行时,因为它可以连续提供电力。这种类型的电力传输减少了系统中的热量产生和电噪声。
控制方法:正弦控制在调整功率输出时匹配正弦波的形状,而 PWM 的工作原理是快速打开和关闭功率。
复杂性: PWM 控制通常比正弦控制更容易实现,正弦控制需要复杂的控制算法和额外的电路。正弦控制很难实施、设计和故障排除。
准确性:正弦控制比 PWM 更准确,因为它可以实时调整稳定且更一致的功率传输,以匹配正弦波参考。
应用: PWM用于步进电机控制、电源转换器和逆变器等应用,而正弦控制用于高精度和高能效应用,例如控制高性能系统的步进电机。
正弦波还是脉宽调制?
正弦控制和 PWM 控制都有各自的优点和缺点。控制方法的选择取决于应用和要求。正弦控制可提供更平稳、更且高效的电力传输,而 PWM 则可靠且易于实施。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
美国专利商标局近日授权苹果公司一项颠覆性专利(编号:US 11,985,623 B2),揭示了其下一代智能眼镜的模块化设计方向。该技术通过可拆卸式"支撑臂"(Securement Arms)创新结构,解决传统头戴设备舒适性与功能扩展的关键痛点。支撑臂从镜框两侧延伸,采用自适应力学分配系统,将设备重量分散至头部颞区及耳廓区域,有效降低鼻托70%以上压力负荷。
日本索尼半导体与美国存储巨头西部数据近日宣布达成战略合作,索尼将为西部数据下一代HAMR(热辅助磁记录)硬盘提供核心激光二极管组件。面对数据中心指数级增长的数据存储需求,此次合作标志着高容量硬盘技术产业化进程的关键突破。索尼计划投资50亿日元(约合3200万美元)在泰国工厂新建生产线,预计2026年该部件产能将实现翻倍增长。
2025年6月12日,TP-Link外销主体联洲国际(TP-Link Systems)位于上海张江的WiFi芯片部门启动重大裁员,从通知到离职手续仅用半天完成,涉及算法、验证、设计等核心岗位员工,仅保留少数成员。公司提供N+3的高额补偿方案,远高于中国法定的N+1标准,被视为当前裁员潮中的“清流”。行业分析指出,此次调整主要针对WiFi前端模块(FEM) 研发线,而非全面退出芯片领域。FEM作为连接芯片与天线的关键组件,其研发投入缩减与WiFi 7芯片量产进度延迟及成本控制压力直接相关。
2025年6月全球存储市场遭遇剧烈波动,DDR4内存现货价格单日暴涨近8%,创下近十年最大单日涨幅。据DRAMeXchange数据显示,截至6月13日,DDR4 8Gb(1G×8)3200颗粒均价飙升至3.775美元,单周涨幅达38.27%,本季度累计涨幅更突破132%。反常的是,DDR4价格竟反超新一代DDR5,形成罕见“价格倒挂”现象,业界直呼“十年未遇”。
全球半导体代工产业正面临先进制程的经济性挑战。三星电子在推进Exynos 2600处理器的2nm GAA工艺量产时,遭遇显著成本压力。据行业信息显示,其原型芯片试产阶段的晶圆制造成本同比增加约40%,当前良率区间为30%-40%,远低于70%的盈亏平衡点。若无法在今年底实现良率突破,Galaxy S26系列的处理器单颗成本将比现行5nm芯片高出约三倍。