发布时间:2025-02-8 阅读量:2486 来源: 综合网络 发布人: bebop
噪声系数(Noise Figure, NF)是评估一个接收机或放大器性能的重要参数之一,它描述了信号通过该设备时信噪比的恶化程度,直接影响系统的灵敏度和整体性能。本文将介绍几种常见的噪声系数测量方法。
1. Y因子法
Y因子法是一种广泛使用的测量噪声系数的方法,尤其适用于低噪声放大器(LNA)。该方法依赖于热噪声源,通常是一个能够切换到不同温度状态的标准噪声源。通过测量当噪声源处于“开”(高温)和“关”(低温)两种状态下的输出功率之比,即所谓的Y因子,可以计算出噪声系数。这种方法的优点在于简单且准确,但需要精确控制噪声源的温度和校准。
2. 冷源法
冷源法也是一种直接测量噪声系数的方法,但它不需要使用可变温度的噪声源。相反,它仅需一个已知温度的“冷”源(通常是室温)。通过测量待测器件(DUT)在输入端接冷源时的输出噪声功率,并结合一些假设和理论公式来推算出噪声系数。此方法适合于那些难以获得稳定高温噪声源的情况,但对测量环境的要求较高。
3. 噪声系数分析仪法
随着技术的进步,专门用于测量噪声系数的仪器——噪声系数分析仪变得越来越普及。这类仪器集成了上述方法中的原理,并提供了自动化的测量流程。用户只需连接好测试设备,设置相关参数,即可快速得到噪声系数的结果。虽然这种方法成本较高,但对于需要频繁进行精确噪声系数测量的应用场景来说非常有价值。
4. 频谱仪法
频谱仪也可以用来测量噪声系数,特别是对于宽带系统而言。此方法涉及到利用频谱仪测量DUT输入和输出端的噪声功率密度,然后根据这些数据计算出噪声系数。尽管频谱仪不是专门为测量噪声系数而设计的工具,但在某些情况下,它可以作为一种便捷的选择,尤其是在缺乏专用噪声系数分析仪的时候。
Teledyne e2v最新推出的三款航天级工业CMOS传感器(Ruby 1.3M USVEmerald Gen2 12M USVEmerald 67M USV),分辨率覆盖130万至6700万像素,均通过Delta空间认证及辐射测试。这些传感器在法国格勒诺布尔和西班牙塞维利亚设计制造,专为极端太空环境优化,适用于地球观测卫星恒星敏感器宇航服摄像机及深空探测设备。产品提供U1(类欧空局ESCC9020标准)和U3(NASA Class 3)两种航天级筛选流程,并附辐射测试报告与批次认证。
英特尔下一代桌面处理器Nova Lake-S(代号)的完整规格于2025年6月密集曝光,其颠覆性的核心设计接口变革及平台升级,标志着x86桌面平台进入超多核时代。本文将结合最新泄露的SKU清单与技术细节,系统性解析该架构的革新意义。
根据最新行业信息及供应链消息,高通2024年芯片战略路线图逐渐清晰。除下半年旗舰平台Snapdragon 8 Gen 2 Elite(代号SM8850)外,公司还将布局定位精准的次旗舰产品线——Snapdragon 8s Gen 5(代号SM8845),通过架构复用策略实现性能与成本的动态平衡,进一步完善中高端安卓终端市场布局。
据供应链最新消息,三星电子原定于2025年下半年启动的430层堆叠V10 NAND闪存大规模量产计划面临延期。行业内部评估显示,该项目预计推迟至2026年上半年方能落地,技术实现难度市场需求波动及设备投资压力构成核心制约因素。
Littelfuse推出的KSC PF系列密封轻触开关专为严苛环境设计,采用表面贴装技术(SMT),尺寸紧凑(6.2×6.2×5.2 mm),具备IP67级防护(完全防尘、1米水深浸泡30分钟不进水),并通过延伸式防护框设计优化灌封工艺。灌封是将PCB元件封装在树脂中以抵御腐蚀、振动和热冲击的关键工艺。传统开关因扁平防护框限制树脂覆盖深度,而KSC PF的延伸结构允许更深的灌封层,提升对PCB整体元件的保护,同时支持鸥翼式或J形弯脚端子选项,适用于工业自动化、医疗设备、新能源汽车等高可靠性领域。