发布时间:2010-10-14 阅读量:1676 来源: 发布人:
中心议题:
* 气体放电管和压敏电阻组合构成的抑制电路原理
* 防浪涌干扰功能的LED绝缘耐压问题
* LED控制装置标准关于耐压的试验方法
解决方案:
* 用一个VDR跨接功能绝缘
* 在带电部件之间使用扼流圈和变压器
防浪涌或防瞬变干扰常用的器件有气体放电管、金属氧化物压敏电阻、硅瞬变电压吸收二极管和固体放电管几种,以及它们的组合。LED路灯防雷电干扰电路及其装置一般与LED控制装置成为一体,常用的有气体放电管和压敏电阻的组合。
一、气体放电管和压敏电阻组合构成的抑制电路原理
由于压敏电阻(VDR)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。图1中,将压敏电阻与气体放电管串联,由于气体放电管寄生电容很小,可使串联支路的总电容减至几个pF。在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图2的R2、G、R3的反应时间为150ns,为改善反应时间加入R1压敏电阻,这样可使反应时间为25ns。
金属氧化物压敏电阻(MOV)的电压-电流特性见图3,金属氧化物压敏电阻(MOV)特性参数见表1。气体放电管(GDT)的电压-电流特性见图4,气体放电管(GDT)特性参数见表2。
由于浪涌干扰所致,一旦加在气体放电管两端的电压超过火花放电电压(图4的u1)时,放电管内部气体被电离,放电管开始放电。放电管端的压降迅速下降至辉光放电电压(图4的u2)(u2在表2中的数值为140V或180V,与管子本身的特性有关),管内电流开始升高。随着放电电流的进一步增大,放电管便进入弧光放电状态。在这种状态下,管子两端电压(弧光电压)跌得很低(图4的u3)(u3在表2中数值为15V或20V,与管子本身的特性有关),且弧光电压在相当宽的电流变动范围(从图4的i1→i2过程中)内保持稳定。因此,外界的高电压浪涌干扰,由于气体放电管的放电作用,被化解成了低电压和大电流的受保护情况(u3和i2),且这个电流(从图4的i2→i3)经由气体放电管本身流回到干扰源里,免除了干扰对灯具可能带来的危害。随着浪涌过电压的消退,流过气体放电管的电流降到维持弧光放电状态所需的最小值以下(约为10mA~100mA,与管子本身的特性关),弧光放电便停止,并再次通过辉光放电状态后,结束整个放电状态(熄弧)。
二、具有防浪涌干扰功能的LED路灯普遍存在的绝缘耐压问题
1、灯具耐压问题存在的现状
在采用上述气体放电管和压敏电阻组合构成的抑制电路防浪涌干扰的LED路灯普遍存在的绝缘耐压问题是在灯具的带电部件与金属部件之间不能承受2U+1000(V)的基本绝缘的电压,常见在600V左右发生击穿现象。造成绝缘耐压问题的根源是气体放电管的耐压参数选择不合理所致。与其说是LED路灯存在的绝缘耐压问题,倒不如说是LED控制装置存在的绝缘耐压问题。因为防浪涌干扰电路通常位于LED控制装置中。带有防浪涌干扰功能的LED控制装置应符合GB19510.14-2009《灯的控制装置第14部分:LED模块用直流或交流电子控制装置的特殊要求》和GB19510.1-2000《灯的控制装置第1部分:一般要求和安全要求》。
2、耐压问题存在的疑问及其解答
制造商往往会对绝缘耐压的试验方法产生疑问,认为气体放电管和压敏电阻的串联电路在绝缘耐压试验时应该断开。
疑问主要来自于以下两个理由:疑问理由1:GB7000.1-2007《灯具-第1部分:一般要求与试验》的“10.2绝缘电阻和电气强度”中规定:“进行这些试验时,下述部件应断开,使试验电压加到部件的绝缘上,而不是加到这些部件的电容或电感功能元件上:
a)旁路连接的电容器;
b)带电部件和灯具壳体之间的电容器;
c)连接在带电部件之间的扼流圈和变压器。”图2中的L-R2-G-PE或N-R3-G-PE是否应该断开?
对于上述GB7000.1-2007中10.2试验时要断开的部件是指灯具点灯电路中附加的电容或组件,而不包括LED控制装置(部件)中的元器件。LED控制装置的电气强度试验依据GB19510.14-2009和GB19510.1-2000标准的要求。灯具在进行电气强度试验时,控制装置中的电容或组件不应断开。
GB7000.1-2007中10.2的a)和b)电容器在灯具耐压试验时断开,不是没有耐压要求,实际在灯具结构中就有明确要求,如GB7000.1-2007中4.10.1双重绝缘和加强绝缘中规定:“抑制干扰电容器应符合GB/T14472的规定,并且其连接方式应符合IEC60065:2001中8.6的要求。”
GB/T14472-1998《电子设备用固定电容器第14部分:分规范抑制电源电磁干扰用固定电容器》表1B规定:Y1电容应用于跨接在双重绝缘或加强绝缘之间、额定电压≤250V、峰值脉冲电压8.0kV;,Y2电容应用于跨接在基本绝缘或补充绝缘之间、额定电压:150V≤U≤250V、峰值脉冲电压5.0kV;Y3电容应用于跨接在基本绝缘或补充绝缘之间、额定电压:150V≤U≤250V;Y4电容应用于跨接在基本绝缘或补充绝缘之间、额定电压<150V、峰值脉冲电压2.5kV。根据跨接绝缘的类型等确定相应分类等级的电容,实际在灯具结构中就提出了相应绝缘对应的电容耐压等级的要求。
图2中的电源一带电部件-R2-G-接地回路或电源另一带电部件-R3-G-接地回路显然不是在绝缘耐压或电气强度试验时应该断开的对象。
疑问理由2:IEC60950-1:2005《信息技术设备的安全第1部分:一般要求》“5.2抗电强度”中的“5.2.2试验程序”中注4规定:“与被试绝缘并联提供直流通路的元件(例如滤波电容器的放电电阻、限压装置或浪涌吸收器)应断开。”图2中的L-R2-G-PE或N-R3-G-PE是否应该断开?
上述元件的断开限压装置或浪涌吸收器仅指压敏电阻(VDR)(例如图2中的R1),未涉及气体放电管和压敏电阻的串联电路(图2中的电源一带电部件-R2-G-接地回路或电源另一带电部件-R3-G-接地回路)。理由是IEC60950-1:2005中“1.5.9浪涌吸收器”中“1.5.9.1一般要求”规定:“二次电路允许使用任何形式的浪涌吸收器,包括压敏电阻(VDR)。用于一次线路的浪涌吸收器应是一个VDR(压敏电阻)且VDR符合该标准附录Q。VDR有时指Varistor(压敏电阻)或金属氧化物压敏电阻(MOV)。例如气体放电管、碳块和非线性的电压/电流特性的半导体装置等的装置,在本标准中均不被视作VDR。”
中国照明网技术论文·照明设计与工程 对于什么绝缘下可以使用VDR,什么绝缘下不可以使用VDR,IEC60950-1:2005的1.5.9.3、1.5.9.4和1.5.9.5规定如下:
(1)允许用一个VDR跨接功能绝缘。
(2)允许用一个VDR,其一侧接地,跨接基本绝缘。VDR跨接基本绝缘这种设备应是下列一种:-B型可插式设备;或-永久性连接式设备;或-具有永久连接保护接地导体装置的设备且提供该导体的安装说明书。
(3)不允许用一个VDR跨接附加绝缘、双重绝缘或加强绝缘。为防止最大连续电压以上的暂态电压、由于在VDR内的泄漏电流的热过载以及万一短路故障时VDR的燃烧和爆炸,IEC60950-1:2005的1.5.9.2规定应与VDR串联连接一个具有足够熔断能力的断路装置。浪涌吸收器作为设备的差模保护情况,还是作为共模保护情况,对安全来说情况是不一样的。差模保护是指在电源的一极与另一极之间提供的抗干扰保护,保护对象是设备,不涉及人身安全保护。共模保护是指在电源的任一极与电源的接地之间提供的抗干扰保护,除了保护设备以外,更重要的涉及人接触设备时的安全。从这个意义上来说,首先应保证安全,然后再考虑满足EMS的要求。
3、LED控制装置标准关于耐压的试验方法
作为LED控制装置,应符合GB19510.14-2009《灯的控制装置第14部分:LED模块用直流或交流电子控制装置的特殊要求》标准的要求,而无论是GB19510.14-2009还是其引用标准GB19510.1-2000《灯的控制装置第1部分:一般要求和安全要求》的“介电强度”中没有断开部件的规定。
4、OSM/EE有关绝缘耐压的决议
EN60950《信息技术设备的安全》和EN60950-1《信息技术设备的安全第1部分:一般要求》中1.5.1有关的No.98/2的OSM/EE(欧洲电工标准化委员会电工设备操作员工会议)就电源上压敏电阻的使用决议指出:“在电源与保护地之间的与避雷器或气体放电管串联的压敏电阻(压敏电阻不必单独认证)的组合应符合基本绝缘(如电气强度和对避雷器或气体放电管的外部爬电距离)且有防止短路的保护装置。1.A型可插式设备:所有国家接受。2.B型可插式设备和永久性连接式设备:所有国家接受。”上述OSM/EE就电源上压敏电阻的使用决议清楚地证明了LED路灯在带电部件与金属部件之间进行耐压试验时,图2中的图2中的L-R2-G-PE或N-R3-G-PE不应该断开。
5、绝缘耐压问题的解决方案
为了使LED路灯能够满足安全要求,气体放电管的耐压选择至关重要,应该选取足够耐压的气体放电管与压敏电阻配套,压敏电阻和气体放电管串联电路(如图1)应能够承受基本绝缘的耐压。几种气体放电管的直流火花放电电压和交流击穿电压的关系见表3,气体放电管的直流火花放电电压一般应选不低于2500V。
三、结束语
1、LED路灯的EMS设计应建立在满足安全要求的基础上,不应以牺牲安全作为代价,换取满足EMS的要求。安全要求不是达不到,恐怕是不知道。
2、LED路灯设计输入必须充分。
(1)LED路灯的安全必须符合GB7000.5-2005《道路与街路照明灯具安全要求》和GB7000.1-2007《灯具第1部分:一般要求与试验》;
(2)LED路灯的性能可依据标准GB/T24827-2009《道路与街路照明灯具性能要求》和GB/T9468-2008《灯具分布光度测量的一般要求》;
(3)LED路灯的EMI需要符合GB17743-2007《电气照明和类似设备的无线电骚扰特性的限值和测量方法》、GB17625.1-2003《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》和GB17625.2-2007《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》;
(4)LED路灯的EMS需要符合GB/T18595-2001《一般照明用设备电磁兼容抗扰度要求》。
2025年9月10-12日,SEMI-e深圳国际半导体展将携手中国国际光电博览会(CIOE),在深圳国际会展中心构建覆盖32万平方米的全球半导体产业生态平台。本届展会由集成电路创新联盟与CIOE联合主办,预计吸引超1000家国际头部企业参展,涵盖芯片设计、晶圆制造、先进封装、核心设备及材料等全产业链环节。展区规划聚焦六大核心领域——IC设计与应用、半导体制造、化合物半导体、先进封装技术、设备与材料、AI算力基础设施,集中展示第三代半导体、Chiplet封装、车规芯片等前沿技术成果,推动半导体与光电、汽车、通信等产业的交叉创新。
全球半导体产业正经历深度结构性调整,龙头企业集体陷入"投产困局"与"亏损漩涡"的双重考验。三星电子美国泰勒工厂设备进口延期、台积电海外基地运营成本失控等标志性事件,暴露出行业面临市场需求周期性下行、地缘政治扰动加剧、技术迭代成本陡增等系统性压力。贝恩咨询数据显示,2023年全球晶圆代工板块平均毛利率下降8.2个百分点,而3nm以下先进制程研发支出激增42%,印证产业步入"高投入、低回报"的战略转型深水区。在此背景下,头部企业通过技术联盟重构、区域产能优化等创新策略,试图在行业洗牌中重塑竞争优势。
在智能汽车高速发展的浪潮下,车载通信网络正面临数据传输速率、信号完整性及国产化替代的多重挑战。近日,南芯科技推出的车规级高速CAN/CAN FD收发器SC25042Q,以5Mbps传输速率、自主振铃抑制技术及全场景兼容性破局而生。该产品通过AEC-Q100认证,对标国际品牌性能,不仅解决了传统CAN总线在复杂拓扑下的信号失真和误码率难题,更依托全国产化供应链实现成本优化,为智能座舱、车身控制及新能源高压系统提供了高可靠通信方案,成为国产车载芯片突围高端市场的关键落子。
根据Counterpoint Research最新报告,2025年第一季度中国智能手机市场销量同比增长2.5%,延续了2024年以来的温和复苏趋势。这一增长主要得益于国家补贴政策的刺激:自1月启动的“国补”计划覆盖售价低于6000元人民币的机型,单机最高补贴500元,直接拉动中高端市场消费活力。数据显示,补贴政策实施首月(1月20日-26日)单周销量同比激增65%,显示出政策对换机需求的显著撬动作用。
2025年4月23日,全球汽车产业目光聚焦上海国家会展中心5.2馆。在中国汽车芯片产业创新战略联盟主导下,首个聚焦汽车芯片的集成型展示平台"中国芯"展区正式启幕。作为科创板汽车芯片第一股的纳芯微电子(股票代码:688052),携12大产品线矩阵惊艳亮相,现场展出的嵌入式电机驱动SoC NSUC1610更斩获"年度影响力汽车芯片"大奖,标志着国产汽车芯片正式进入系统级创新阶段。