基于TMS320LF2407A的电动汽车用数字化充电电源

发布时间:2010-10-16 阅读量:1186 来源: 发布人:

摘要:介绍了电动汽车用数字化充电电源,它以移相全桥逆变器加二次整流电路作为主电路,重点分析了其 工作原理;采用TMS320LF2407A实现控制系统硬件电路平台,并叙述了控制系统软件及数字PID控制器的设计,给出数字化充电电源的实验结果及其 技术参数。数字化充电电源实现了电源的软开关和数字化控制,具有良好的输出特性和响应特性,可以满足不同动力电池的复杂充电要求。

关键词:电动汽车 充电电源 数字化控制 软开关

        随着电动汽车工业的不断发展,适用于电动汽车特殊要求的动力电池也在不断发展,因此 对电动汽车专用充电电源提出了更高的要求。DSP技术的日臻完善,标志着数字化技术的兴起,使得控制领域又面临着一次重大的技术变革。因此,对电动汽车专 用充电电源的数字化控制技术进行研究,开发出国产电动汽车专用的数字化充电设备,对我国电动汽车的发展和普及,无疑将具有十分重要的理论意义和工程应用价 值。

1 数字化充电电源的主电路构成

        充电机主回路是数字化充电电源的基础,直接影响到充电电源的性能。逆变式电源体积 上、重量轻;而且由于其工作频率高、具有很高的响应速度、易于实现复杂的输出特性,因此可以满足不同充电策略所要求的充电曲线。所以这里采用移相全桥逆变 加二次整流的方案作为充电电源的主电路。

        主电路的原理图如图1所示。图中,Vs是单相或三相交流输入经过整流滤波后得到的直接电压,Q1~Q4是功率开关管IGBT,T1是功率变压器,D1、D2是变压器二次侧数流二极管,Lf和Cf分别是输出滤波电感和滤波电容。

        图2为驱动脉冲的时序图,它几乎和传统的移相控制的驱动脉冲时序图相同,只是Q2和 Q4间的死区是随占空比的变化而调整的(如阴影部分所示)。当母线电压较高或负载较轻时,Q2和Q4间将获得更大的延时时间,在每半个周期中,Q1和Q4 将在同一时刻开能,但Q4将首先关断,这样,Q2和 Q4组成了超前桥臂,而Q1和Q3组成了滞后桥臂。

        假定Q1和Q4初始时处于导通状态,在某一时刻关断Q4,则C2、C4作为缓冲电容 为Q4的关断提供零电压条件。拖尾电流依然存在于Q4 中,但零电压关断在很大程度上减少了它的判断损耗。Llk(指高频变压器的漏感和线路等效电感)将使C4的电压继续增长,直至Q2的反压超过30V而发生 反向雪崩,此时Q2的特性类似于一个齐纳二极极管,雪崩过程持续到1/2Llkip2的能量全部在Q2上面使ip衰减到零为止。由于ip则减为零时,b点 电位仍高于母线电压,其压差等于IGBT的反向雪崩电压值,因此一个较小的电流将通过Q1反向流回。这将有助于复合Q1中存储的电荷,从而使得Q1拖尾电 流得以真正消除,使得Q1能够在零电流条件下关断。Q2由于加有反压而在零电压状态下完成无损耗开通。最后,当Q1完全关断后,Q3开通,下半个工作周期 开始。

2 基于TMS320LF2407A的数字化控制电路硬件平台

        采用数字信号处理器作为开关电源的控制器不仅可以克服分立元件过多、电路可靠性差、电路复杂等缺点,还可以解决单片集成控制器不灵活的问题;而且DSP数字处理器具有工作频率高、指令周期短等优点,并具有改进的总线结构和强大的数字处理功能。

        TMS320LF2407A芯片是TI公司24X DSP控制器系列的新成员,它在电机的数字化控制方面得到广泛的应用,通过编程和外部电路的配合,完全能够实现电动汽车用充电电源的数字化控制。图3为控 制系统的功能框图。控制系统以TMS320LF2407A为核心,通过外部附加电路实现系统所需要的各项控制功能:

(1)通过滤波电路对传感器输入信号进行处理,然后由ADC采样电路进行数字采样并送入中央处理器;

(2)通过偏磁检测电路进行检测,如果发现功率变压器有磁偏现象,将立刻被TMS320LF2407A捕捉到并进行相应的处理;

(3)由TMS320LF2407A直接生成有限双极性PWM控制信号,经过隔离驱动放大后控制功率开关管IGBT的导通与关断;

(4)利用处理器内部的I/O口实现一些外围的附加控制功能,比如:指示灯显示、电路的缓吸、接触器的控制、散热风扇的开关控制等;

(5)利用SCI串行通讯进行相关的显示和控制调节;

(6)通过CAN2.0控制器与外部设备进行远程通讯。

        在电源运行过程中,可能会发生一些异常状态,例如由于器件不一致等原因,造成变压器磁偏最终导致变压器原边饱和;全桥电路出现直通使得原边母线短路;副边负载过流;散热器过热等。对于以上异常状态,从硬件电路上给予设计并采取相应保护措施。

3 控制系统软件设计

        控制系统负责整个充电过程的控制和监测,实现充电过程的数字化控制。充电电源的控制软件采用C语言和汇编语言混合编制,在完成其控制功能的同时,力求程序结构合理简单,以适应大功率电源对控制系统的稳定性和可靠性的要求。

3.1 软件的整体结构

        控制软件主要包括以下几个部分:采用处理;由采样值计算输出脉宽,并根据此值调整输出的PWM脉冲宽度;通过SCI通讯接收控制指令并发送输出的电流、电压值;CAN通讯程序;故障处理及保护功能程序。控制系统软件初始化程序和主程序流程图如图4所示。

        为了提高软件的运行效率,把不需要及时处理的都分放在主程序里面,而把一些需要及时 处理的控制过程通过中断的方式进行处理。如显示、控制等过程安排在主程序中;而PWM波形的调制等需要进行周期处理的工作则通过中断方式进行处理。另 外,CAN通讯程序也采用中断服务程序处理,根据接收到的信息决定具体的充电方式并对充电过程进行调整。

3.2 数字PID控制器的简要设计

        PID控制具有结构简单、参数易于调整等优点,因而在连续的系统控制中得到了广泛的应用。它是一种按照被控制量偏差的比例、积分和微分通过线性组合进行控制的方法,其控制规律如下:

        由于数字PID控制是一种采样控制,它根据采样时刻的偏差值计算控制器,在(1)式中的积分和微分项不能直接准确计算,因此在本控制系统中采用了增量式PID算法,其控制规律的数值公式为:

        充电电源采用高频的逆变频率,对控制器的响应时间要求较高。Δui对应第I时刻控制 量的增量即PWM脉冲宽度的变化值。由(2)式可以看出,增量式算法只需要保存前三个时刻的偏差值,占用空间小,计算误差或精度不足时对系统影响小,累计 误差同样也比较小;而且在每次重新启动时,可以在原来的基础上进行控制,减少系统的响应时间,同时也避免了因偶然因素造成的控制器输出的大幅度剧烈变化, 使系统的可靠性大大提高。

        对于本系统,PID控制器的参数主要通过试验确定并不断进行整定,最终达到满意的结 果。系统的采样周期就是电源主电路的开关周期,根据前一个周期的采样值计算下一个周期的输出脉宽,每一次采样中断必须进行一次计算。PID的算法嵌套在 ADC的中断处理程序之中。

4 实验结果及技术参数

        整个实验系统由所研制的电动汽车用充电电源、电动汽车用动力电池(镍氢)、纯电阻负载、PC机以及数字示波器等测试设备组成。

        软开关电源变压器原边电压(Up)、原边电流(ip)波形的测试结果如图5所示。从 波形图中可以看出,变压器原边电压(Up)和原边电流(ip)的波形均较理想。因为主功率开关管工作于零流和零压的状态下,原边电流和电压没有出现传统硬 开关变换器所具有电压、电流尖峰。

        系统的输出响应曲线如图6所示。从图中可以看到,系统的响应速度较快、超调量小且稳态控制精度较高,输出电压从200V升到500V只需要0.5秒的时间。

充电机的技术参数如下:

·输入电压:AC 380V三相交流电

·输出电压:DC 300V~720V可调

·输出电流:0~30A可调

·充电效率:≥90%

·输出纹波:≤1%

·工作温度:-20℃~+60℃

        所研制的电动汽车用数字化充电电源采用软开关功率变换技术,提高了充电机的充电效率 和可靠性;控制系统采用数字处理芯片和数字控制技术,具有很高的实时性和良好的控制功能,可以满足不同动力电池的复杂充电要求;整机采用模块化方式,可以 和电动汽车进行可靠通讯,且人机交互性好。

相关资讯
成本直降40%!易飞扬硅光模块如何重构DCI市场格局?

在全球5G网络部署与边缘计算需求井喷的背景下,易飞扬创新推出基于O波段的100G QSFP28 DWDM光模块,直击城域网络升级痛点。该产品通过零色散传输架构与硅光集成技术,突破传统C波段方案在中短距场景下的性能瓶颈,以低于3.5W的功耗实现30km无补偿传输,同时兼容开放光网络架构。据行业测算,其部署成本较同类方案降低40%,为5G前传、分布式AI算力互联及绿色数据中心建设提供了高性价比选择,或将成为运营商边缘网络改造的关键技术引擎。

充电效率94.8% vs 国际竞品:国产IC技术路线图全解析

在全球能源转型与欧盟新电池法规(EU 2023/1542)的驱动下,旭化成微电子(AKM)于2025年2月正式量产AP4413系列充电控制IC,以52nA超低功耗、94.8%充电效率及多电压适配等核心技术,重新定义小型设备供电逻辑。该产品通过电容器预充电机制破解完全放电恢复难题,并凭借动态电压调节算法兼容光能、振动等微瓦级能源输入,显著优于TI、ADI等国际竞品。面对国产替代窗口期,AP4413依托BCD工艺与专利壁垒抢占先机,有望在智能家居、工业传感等千亿级市场替代传统一次性电池方案,成为环保供电赛道的标杆级解决方案。

新能源汽车与工业4.0双重驱动:全球电子分销巨头技术布局揭秘

作为全球电子元器件分销领域的领军者,贸泽电子始终以"技术赋能创新"为核心战略,通过构建覆盖1200余家原厂的供应链网络,为工业自动化、汽车电子、智慧农业等前沿领域提供关键技术支持。2025年第一季度,公司新增物料突破8,000项,其中多项产品体现了行业技术演进的三大方向:

工业级高灵敏度振动传感器V112E的核心竞争力与市场价值

V112E高精度振动传感器以1V/g超高灵敏度与纳米级分辨率为核心突破,重新定义了工业设备健康监测的技术边界。通过钛合金激光密封工艺与陶瓷剪切传感技术,该传感器兼具IP67防护等级与-55~120℃极端环境适应性,攻克了传统产品在高温、潮湿场景下的信号失真与寿命短板。其覆盖半导体制造、能源安全、医疗设备等高价值领域,精准捕捉微米级振动能量,为工业4.0智能化运维提供硬核数据支撑,有望在千亿级传感器市场中占据高端技术制高点。

从“卡脖子”到“自主可控”:裕太微车载TSN交换芯片的四大技术突围

在汽车智能化浪潮下,车载网络带宽需求呈指数级增长,传统总线技术面临瓶颈,车载以太网凭借高带宽、低延迟等优势成为新一代车载通信核心。然而,该领域长期被博通、Marvell等国际巨头垄断,国产化率近乎为零。裕太微电子率先破局,推出中国大陆首款集成自研千兆&百兆PHY的 车规级TSN交换芯片YT9908/9911系列 ,以“全能、可靠、安全、不加价”四大技术优势对标国际一流,填补国产高端车载通信芯片空白。该芯片支持多域时钟同步精度<20纳秒、ASIL-D功能安全认证及国密加密算法,可满足自动驾驶、智能座舱等高实时场景需求,预计2025年带动国内车载以太网芯片市场规模突破293亿元,成为国产汽车芯片突围的关键里程碑。