触摸屏的中心议题:
*触摸屏的基本原理
*触摸屏的控制实现
触摸屏的基本原理
典型触摸屏的工作部分一般由三部分组成,如图1所示:两层透明的阻性导体层、两层导体之间的隔离层、电极。阻性导体层选用阻性材料,如铟锡氧化 物(ITO)涂在衬底上构成,上层衬底用塑料,下层衬底用玻璃。隔离层为粘性绝缘液体材料,如聚脂薄膜。电极选用导电性能极好的材料(如银粉墨)构成,其 导电性能大约为ITO的1000倍。
触摸屏工作时,上下导体层相当于电阻网络,如图2所示。当某一层电极加上电压时,会在该网络上形成电压梯度。如有外力使得上下两层在某一点接 触,则在电极未加电压的另一层可以测得接触点处的电压,从而知道接触点处的坐标。比如,在顶层的电极(X+,X-)上加上电压,则在顶层导体层上形成电压 梯度,当有外力使得上下两层在某一点接触,在底层就可以测得接触点处的电压,再根据该电压与电极(X+)之间的距离关系,知道该处的X坐标。然后,将电压 切换到底层电极(Y+,Y-)上,并在顶层测量接触点处的电压,从而知道Y坐标。
触摸屏的控制实现
现在很多PDA应用中,将触摸屏作为一个输入设备,对触摸屏的控制也有专门的芯片。很显然,触摸屏的控制芯片要完成两件事情:其一,是完成电极 电压的切换;其二,是采集接触点处的电压值(即A/D)。本文以BB (Burr-Brown)公司生产的芯片ADS7843为例,介绍触摸屏控制的实现。
ADS7843的基本特性与典型应用
ADS7843是一个内置12位模数转换、低导通电阻模拟开关的串行接口芯片。供电电压2.7~5 V,参考电压VREF为1 V~+VCC,转换电压的输入范围为0~ VREF,最高转换速率为125 kHz。ADS7843的引脚配置如图3所示。表1为引脚功能说明,图4为典型应用。
ADS7843的内部结构及参考电压模式选择
ADS7843之所以能实现对触摸屏的控制,是因为其内部结构很容易实现电极电压的切换,并能进行快速A/D转换。图5所示为其内部结 构,A2~A0和SER/为控制寄存器中的控制位,用来进行开关切换和参考电压的选择。
ADS7843支持两种参考电压输入模式:一种是参考电压固定为VREF,另一种采取差动模式,参考电压来自驱动电极。这两种模式分别如图 6(a)、(b)所示。采用图6(b)的差动模式可以消除开关导通压降带来的影响。表2和表3为两种参考电压输入模式所对应的内部开关状况。
ADS7843的控制字及数据传输格式
ADS7843的控制字如表4所列,其中S为数据传输起始标志位,该位必为"1"。A2~A0进行通道选择(见表2和3)。
MODE用来选择A/D转换的精度,"1"选择8位,"0"选择12位。
SER/选择参考电压的输入模式(见表2和3)。PD1、PD0选择省电模式:
"00"省电模式允许,在两次A/D转换之间掉电,且中断允许;
"01"同"00",只是不允许中断;
"10"保留;
"11"禁止省电模式。
为了完成一次电极电压切换和A/D转换,需要先通过串口往ADS7843发送控制字,转换完成后再通过串口读出电压转换值。标准的一次转换需要 24个时钟周期,如图7所示。由于串口支持双向同时进行传送,并且在一次读数与下一次发控制字之间可以重叠,所以转换速率可以提高到每次16个时钟周期, 如图8所示。如果条件允许,CPU可以产生15个CLK的话(比如FPGAs和ASICs),转换速率还可以提高到每次15个时钟周期,如图9所示。