电容触摸感应MCU工作原理与基本特征

发布时间:2011-01-10 阅读量:1349 来源: 我爱方案网 作者:

中心议题:
    * 电容触摸MCU的工作原理
    * 电容触摸MCU的基本特征
解决方案:
    * 集成特殊的电容数字转换器(CDC)

针对市场的需求,来自美国的高效能模拟与混合信号IC创新厂商Silicon Laboratories(简称:Silicon Labs)公司特别推出了C8051F7XX和 C8051F8XX系列的MCU(单片机),专门针对电容触摸感应而设计,在抗噪性能和运算速度上表现的非常突出。

一、Silicon Labs公司的电容触摸系列MCU

目前Silicon Labs公司推出的C8051F7xx和C8051F8xx等电容触摸系列MCU,以高信噪比高速度的特点在业界表现尤为出色。同时,灵活的I/O配置, 给设计带来更多的方便。另外,由于该系列MCU内部集成了特殊的电容数字转换器(CDC),所以能够进行高精度的电容数字转换实现电容触摸功能。

CDC的具体工作原理:

如图1所示,IREF是一个内部参考电流源,CREF是内部集成的充电电容,ISENSOR属于内部集成的受控电流源,CSENSOR为外部电 容传感器的充电电容,由于人体的触摸引起CSENSOR的变化,通过内部调整过的ISENSOR对CSENSOR进行瞬间的充电,在CSENSOR上产生 一个电压VSENSOR,然后相对内部参考电压经过一个共模差分放大器进行放大;同理IC内部的IREF对CREF充电后也产生一个参考电压并相对同样的 VREF经过差分放大,最后将2个放大后的信号通过SAR(逐次逼近模数转换器)式的ADC采样算出ISENSOR的值。

        CDC的具体工作原理
Silicon Labs SAR式的ADC采样可选择12-16位的分辨率,如图2所示,采用16位的分辨率进行逐位比较采样:首先从确定最高位第16位 (IREF=0x8000)开始,最高位的值取决于电容的充电速率,也就相当于电流的大小,取电流IREF/2,比较VSENSOR和VREF:

VSENSOR 》 VREF 则 最高位 = 0 ;
VSENSOR 《 VREF 则 最高位 = 1 ;
随后,SAR控制逻辑移至下一位,并将该位设置为高电平,进行下一次比较:
如果第16位是1,则取下一个IREF=0xC000 ;
如果第16位是0,则取下一个IREF=0x4000.

这个过程一直持续到最低有效位(LSB)。上述操作结束后,也就完成了转换,将算出的16位转换结果储存在寄存器内。

                 采用16位的分辨率进行逐位比较采样
 
利用此电容采集转换功能,可用在电容触摸屏或者触摸按键上。比如,电容式触摸屏的应用(图3所示)。一般自容式电容触摸屏主要包括一层表面玻璃 层,中间两层行列交叉的ITO层(行列层之间间没有短接),以及GND底层。每一行和列分别与MCU的采集输入通道直接相连,当手指触摸到电容屏的表面玻 璃层时,会引起某一行或列的ITO 块的对地电容(如图4)值变大,从而通过电容采样以及特定的算法确定电容值发生一定变化的点(触摸点)的位置(X,Y),最后将触摸点的位置上传给主处理 器实现系统操作功能。

目前Silicon Labs 的C8051F7XX触摸屏功能主要是单点触摸,但通过软件算法可以实现两点的手势识别,比如缩放、旋转等,同时还能实现对水滴识别以及湿的手指触摸正常 划线功能。
 

而触摸按键的电容采样原理一样,只是每个采集输入通道连接一个触摸按键,MCU可以直接确定某个按键被触摸然后进行相应功能的实现,算法处理相 对简单。

               电容式触摸屏的应用
 
 三、Silicon Labs触摸系列 MCU的优势及特点

1.高信噪比

电容传感器模块是先通过释放外部电容的电量,然后再计算出其充电速度来确定变化的电容值的。所以在每次的测量之前必须彻底地释放掉电容遗留的电 量才能保证更准确的测量。

外部电容的放电是否彻底直接影响到抗噪性能,一般的MCU都是通过一个电阻接地来放电的,而Silicon Labs的MCU是在每一位的转换之前进行两级的电容重置放电:首先通过连接一个小阻值的电阻接地进行第一级的放电,释放了绝大部分的电容残余电量,然后 转向第二级的重置释放,与一个高阻值的电阻串联接地,彻底消除可能由于第一级重置释放结束时产生的噪声能量。通过两级的电容重置释放可以充分地消除环境噪 声的影响,从而大大提高转换的信噪比。

传统的信噪比计算方法是手指触摸时测量的平均电容值AvgA与空闲时所测量的电容值的差值AvgI,然后与空闲时噪声引起的电容的峰值 NoiseI的比值:
                                     传统的信噪比计算方法

 目前业界所能达到的信噪比一般只做到80:1,而Silicon Labs 的触摸系列MCU的信噪比则可达到99.7:1(如图5所示),高的信噪比保证更大程度的减少误操作,同时灵敏度也大大提高。

                                 Silicon Labs 的触摸系列MCU的信噪比
2.高速度

Silicon Labs MCU采用的是3级流水线的指令结构,70%的指令执行只需1或2个系统时钟周期,CPU的速度可以达到25MIPS,每个通道的转换最快只需40us, 如果是27个通道,扫描一遍也只需1.08ms,高效的转换速率,可以提高系统的工作效率,同时让使用者体验速度的效果。

3.I/O配置灵活

Silicon Labs的MCU的I/O口可以根据设计人员的需要通过软件任意配置,不像其他的MCU的某些功能I/O已经被固定,从而在LAYOUT时出现许多交错的 线路而给设计带来麻烦,而且C8051F700最多可有38个电容转换输入通道,丰富的通道输入为电容触摸应用的设计带来更多的方便,兼容性更强。
相关资讯
Teledyne推出三款航天级CMOS传感器:攻克太空成像可靠性难题

Teledyne e2v最新推出的三款航天级工业CMOS传感器(Ruby 1.3M USVEmerald Gen2 12M USVEmerald 67M USV),分辨率覆盖130万至6700万像素,均通过Delta空间认证及辐射测试。这些传感器在法国格勒诺布尔和西班牙塞维利亚设计制造,专为极端太空环境优化,适用于地球观测卫星恒星敏感器宇航服摄像机及深空探测设备。产品提供U1(类欧空局ESCC9020标准)和U3(NASA Class 3)两种航天级筛选流程,并附辐射测试报告与批次认证。

英特尔Nova Lake桌面处理器解析:52核异构设计颠覆性能格局

英特尔下一代桌面处理器Nova Lake-S(代号)的完整规格于2025年6月密集曝光,其颠覆性的核心设计接口变革及平台升级,标志着x86桌面平台进入超多核时代。本文将结合最新泄露的SKU清单与技术细节,系统性解析该架构的革新意义。

高通双芯战略落地:骁龙8s Gen5携台积电N3P制程卡位中高端市场

根据最新行业信息及供应链消息,高通2024年芯片战略路线图逐渐清晰。除下半年旗舰平台Snapdragon 8 Gen 2 Elite(代号SM8850)外,公司还将布局定位精准的次旗舰产品线——Snapdragon 8s Gen 5(代号SM8845),通过架构复用策略实现性能与成本的动态平衡,进一步完善中高端安卓终端市场布局。

三星430层V10 NAND量产推迟至2026年,技术瓶颈与成本压力成主因

据供应链最新消息,三星电子原定于2025年下半年启动的430层堆叠V10 NAND闪存大规模量产计划面临延期。行业内部评估显示,该项目预计推迟至2026年上半年方能落地,技术实现难度市场需求波动及设备投资压力构成核心制约因素。

Littelfuse KSC PF系列密封轻触开关:灌封友好型开关时代来临

Littelfuse推出的KSC PF系列密封轻触开关专为严苛环境设计,采用表面贴装技术(SMT),尺寸紧凑(6.2×6.2×5.2 mm),具备IP67级防护(完全防尘、1米水深浸泡30分钟不进水),并通过延伸式防护框设计优化灌封工艺。灌封是将PCB元件封装在树脂中以抵御腐蚀、振动和热冲击的关键工艺。传统开关因扁平防护框限制树脂覆盖深度,而KSC PF的延伸结构允许更深的灌封层,提升对PCB整体元件的保护,同时支持鸥翼式或J形弯脚端子选项,适用于工业自动化、医疗设备、新能源汽车等高可靠性领域。