发布时间:2011-07-18 阅读量:1081 来源: 我爱方案网 作者:
中心议题:
*改变油耗的方法
今天史无前例的老爸把我们直接送到了浦东,我相信这一切都是托我们的下一代计划的福。爸从94年学车,在开车节油上有着不小的心得,不过我相信能够使用技术的手段,使得新手和老手之间的节油水平做成无限接近,可能是我们汽车工程师的一种使命与期望。两个比较能显著的改变油耗的,可能就是Start-stop和制动能量回馈系统了。
关于制动能力回馈的基本知识,可以参考这个网页系列:
Introduction to How Regenerative Braking Works
Regenerative Braking Circuits
Regenerative Braking Controllers
Hybrid Regenerative Braking
Hydraulic Regenerative Braking
Regenerative Braking Efficiency
Regenerative Braking Diagram
Lots More Information
See all Brake Types articles
其实想要理解它,是比较容易的,但是与底盘和刹车相关的东西,岂是那么简单和容易的。
引用Toyota关于教材中Hybrid05——Chassis的制动能量回收和刹车系统的介绍,可以得到一些概念:
PS:Toyota有个brake系列的教程brake01~brake13,可作为科普入门材料。
1.采用电机的反向运转的方法,刹车产生的效果和力与电机的电流成正比,如果是电池的话,瞬间的电流实际是有限制的
2.必须采取足够的刹车力以及能量分配,才能保证足够安全和能力回收的效率
3.整个系统还是颇为复杂的,牵涉到了前后Stress的分配问题了
其他各家的材料,可以从以下材料中获取:
Hybrid Regenerative Braking Systems Department of Automotive Technology Presentations Southern Illinois University Carbondale Year 2010 Timothy Janello Eugene Talleyy
据The Verge等多家权威媒体报道,英伟达(NVIDIA)正联合联发科开发基于Arm架构的AI PC处理器,预计2025年底至2026年初正式推出。该芯片将整合Arm CPU核心与新一代Blackwell GPU架构,首款搭载设备已确认由戴尔旗下高端电竞品牌Alienware首发,目标直指高性能游戏本市场。
纳芯微电子最新推出的NSD2622N是一款针对增强型氮化镓(E-mode GaN)功率器件优化的高压半桥驱动芯片。该芯片通过创新性地集成正负压稳压电路(可调5V-6.5V正压与固定-2.5V负压)与高可靠性电容隔离技术,完美解决了GaN器件在高压大功率场景下易受串扰误导通、驱动电路设计复杂等核心痛点。其支持自举供电、超强200V/ns dv/dt抗扰能力以及2A/-4A峰值驱动电流,显著简化了系统设计,提升了电源效率和可靠性,为人工智能数据中心电源、光伏微型逆变器、车载充电机等高增长领域提供了极具竞争力的驱动解决方案。
在“双碳”目标驱动下,光伏组件功率持续提升(2025年主流组件功率突破700W),对旁路二极管的性能要求显著提高。华润微电子功率器件事业群(PDBG)基于肖特基二极管领域的技术积累,推出第二代180mil TMBS(Trench MOS Barrier Schottky)器件。该产品通过优化正向压降(VF)、反向漏电流(IR) 及高温工作特性,解决了高功率组件在热斑效应、高温环境下的可靠性痛点,目前已向天合、晶澳、晶科等头部光伏企业批量供货。
全球智能手机巨头三星电子正积极推动其人工智能服务多元化战略。权威消息显示,该公司已进入与美国AI搜索新锐Perplexity深度合作的最终谈判阶段,计划在明年初发布的Galaxy S26系列中整合其尖端技术。此举标志着消费电子行业头部玩家正加速构建独立于传统搜索引擎巨头的AI生态体系。
据TrendForce集邦咨询统计,2025年第一季度全球DRAM产业营收达270.1亿美元,较上季度缩减5.5%。此轮下滑主要受两大因素驱动:一是标准型DRAM合约价持续走低,二是高带宽内存(HBM)出货规模阶段性收缩。市场进入技术转换关键期,三大原厂制程升级导致产能结构性调整,为二线厂商创造了新的市场机遇。