发布时间:2011-07-22 阅读量:1628 来源: 我爱方案网 作者:
中心议题:
* 无刷DC马达设计实现吊扇高能效运动控制应用
例如,运动控制是目前众多家用电器的关键需求,如烘干机、洗衣机、冰箱、空调和各种厨房器具。为了使这些设备以最佳性能工作,采用经过改进的新型马达控制技术是关键所在。此外,能效的提高不仅有益于所有人,新技术还能够提供更多的优势,如实现更平稳的工作,并大幅度降低噪声水平。
制造商正在应对这些挑战。我们注意到了这样一个变化趋势,即低效交流感应马达逐渐被淘汰,人们转向采用高效的替代方案,如无刷直流(BLDC)和永磁同步马达(PMSM)。
在吊扇制造领域,这一点尤为明显。吊扇往往运行不稳定,噪声可能相当大,而在闷热的夜晚,用户多么希望在习习凉风之下安然入眠。这类应用设备正是BLDC/PMSM马达真正大显身手之处,因为这些创新型马达具有高效率、高功率密度、高转矩和低噪声。
不过,不同于交流感应马达和直流有刷马达,BLDC马达必须配以驱动控制电路以实现定转子的高效共同运作。对于某些吊扇制造商而言,这一需求可能会带来一些技术上的挑战,体现在控制电路设计或电机设计上,或者这两方面的挑战都存在。
吊扇应用实现最低噪声的关键因素
为了减少噪声,必须努力改进磁路设计、组件结构(图1)和驱动电路。
图1:吊扇应用的组件结构图
在磁路设计中,应注意减少转矩脉动(torque ripple),以便使马达运行更平稳,从而更安静。这可以通过改进反电势(back EMF)、磁通量分布及齿槽转矩(cogging torque)性能来实现。
除了永磁体的安装方法之外,对PMSM结构组件的要求也类似于传统的马达设计。例如对结构设计、部件刚性、加工精度、转子动态平衡、轴承和组合装配之间的拟合间隙的要求几乎都一样。不过,应特别注意:PMSM具有极高的能量密度,这意味着它比传统马达更小,而能量输出相同,因此会带来更多有待解决的设计挑战。
至于驱动电路,其设计旨在控制电子元器件产生定子磁场,该磁场与转子磁场相互作用以运行马达。驱动波形可以是方波或正弦波。方波驱动可以通过6个脉冲提供一个360°的磁场;这种控制实现方法十分简单,不过很难抑制相位变换过程中的振动和噪音。正弦波驱动可以产生与转子的旋转位置同步的正弦旋转磁场,使转子运行更平稳、更安静,但设计要困难得多。
集成式解决方案减少设计工作量,加快上市速度
为了应对和超越这些设计挑战,飞兆半导体针对吊扇设计开发了一种创新性方案(图2)。这种控制机制使马达能够采用正弦波驱动以非常低的速度运行。该技术采用空间矢量调制(SVM)和一个最佳角度,使电路能够产生合适的正弦波,让马达平稳安静地旋转。
2:飞兆半导体针对吊扇设计开发的创新性方案
飞兆半导体(Fairchild)拥有完整的马达控制集成电路(IC)、智能电源模块 (SPM)和功率金属氧化物半导体(MOS)产品组合及专业技术(图3),可实现集成式BLDC解决方案。这类解决方案不仅可以满足客户的各种需求,如获得安静的一夜好眠,还能够帮助吊扇及其它需要马达控制的电器的制造商减少设计工作量,加快产品上市速度。
Teledyne e2v最新推出的三款航天级工业CMOS传感器(Ruby 1.3M USVEmerald Gen2 12M USVEmerald 67M USV),分辨率覆盖130万至6700万像素,均通过Delta空间认证及辐射测试。这些传感器在法国格勒诺布尔和西班牙塞维利亚设计制造,专为极端太空环境优化,适用于地球观测卫星恒星敏感器宇航服摄像机及深空探测设备。产品提供U1(类欧空局ESCC9020标准)和U3(NASA Class 3)两种航天级筛选流程,并附辐射测试报告与批次认证。
英特尔下一代桌面处理器Nova Lake-S(代号)的完整规格于2025年6月密集曝光,其颠覆性的核心设计接口变革及平台升级,标志着x86桌面平台进入超多核时代。本文将结合最新泄露的SKU清单与技术细节,系统性解析该架构的革新意义。
根据最新行业信息及供应链消息,高通2024年芯片战略路线图逐渐清晰。除下半年旗舰平台Snapdragon 8 Gen 2 Elite(代号SM8850)外,公司还将布局定位精准的次旗舰产品线——Snapdragon 8s Gen 5(代号SM8845),通过架构复用策略实现性能与成本的动态平衡,进一步完善中高端安卓终端市场布局。
据供应链最新消息,三星电子原定于2025年下半年启动的430层堆叠V10 NAND闪存大规模量产计划面临延期。行业内部评估显示,该项目预计推迟至2026年上半年方能落地,技术实现难度市场需求波动及设备投资压力构成核心制约因素。
Littelfuse推出的KSC PF系列密封轻触开关专为严苛环境设计,采用表面贴装技术(SMT),尺寸紧凑(6.2×6.2×5.2 mm),具备IP67级防护(完全防尘、1米水深浸泡30分钟不进水),并通过延伸式防护框设计优化灌封工艺。灌封是将PCB元件封装在树脂中以抵御腐蚀、振动和热冲击的关键工艺。传统开关因扁平防护框限制树脂覆盖深度,而KSC PF的延伸结构允许更深的灌封层,提升对PCB整体元件的保护,同时支持鸥翼式或J形弯脚端子选项,适用于工业自动化、医疗设备、新能源汽车等高可靠性领域。