对于电池被动均衡的计算1

发布时间:2011-07-23 阅读量:831 来源: 我爱方案网 作者:


中心议题:
        *SOC计算过程

在家,由于没带电脑和文献,就将就一些把一些分析的过程勾勒一下,然后根据后续的实际电池模型,特性和其他数据进行运算。很感欣慰啊,终于慢慢摸到了电池管理的边了,详细后面讨论SOC计算,更热闹了。

这里以Nissan的Leaf为例吧:

80 kW的电机,24KWh的电池。分为48个module,每个module里面是4个cell,应该是2并2串联,由于这个比较奇怪,因此我们以96个小的block来进行被动均衡,每个3.7V&67Ah,总电压为355V。续航里程160公里,以巡航速度60Km/h为例。假定nissan开启的保护窗口为20%~90%,以70%为例。

通过请教同事,一般电池不允许以3C以上放电。巡航的时候可开为160Km/60(km/h)=2.6取2.5小时,此时使用功率为9.6KW,以10KW记,此时的电流为28A。充电功率以2KW记,充电电流为5.63A。

接下来设定一些参数,可讨论(希望xd们不惜赐教)

1.初始的容量偏差为±1%,极端的话为±3%

2.好的电池和差的电池差很多,这个数据很难定义,看到很多图定义cycle Life

比如


 

在这里需要分两部分:

a.正常电池的衰减特性,按照上面的几张图,线性化还是可以考虑的。

b.所有电池的衰减分布,一般认为有基本偏差和极端值,这里使用正态分布吧。
 

3.SOC的测量误差为±2%,极端的话为±6%

4.假定电压随SOC(DOD)的曲线以标准曲线为准,将之三段线性化,可能需要二次函数拟合效果较好。


 

计算过程注意点:

A.充电过程

假定开启平衡点为SOC=90%

计算目标

1.初始时候的最坏情况可充容量

2.根据cycle的变化不均衡的可充容量

3.计算均衡电流(一般认为定电阻的情况)的效果(随cycle曲线)

4.计算电阻的发热情况,实际一定的散热条件下,热量可行的电阻和电流

5.得到被动均衡的优化区间  

以上的分析过程是按照我以前设计汽车电子模块的一些经验而来,事实上我也找不到评估和设计的算法。xdjm们一起挑挑毛病吧。

PS:手上没有数据和模型,这篇文章主要作为设定。明天早上用excel先算一下,后面用mathcad进行细化分析(极值分析和蒙特卡洛分析)。希望各位xd不惜赐教,特别是做cell有数据滴。
 

相关资讯
Teledyne推出三款航天级CMOS传感器:攻克太空成像可靠性难题

Teledyne e2v最新推出的三款航天级工业CMOS传感器(Ruby 1.3M USVEmerald Gen2 12M USVEmerald 67M USV),分辨率覆盖130万至6700万像素,均通过Delta空间认证及辐射测试。这些传感器在法国格勒诺布尔和西班牙塞维利亚设计制造,专为极端太空环境优化,适用于地球观测卫星恒星敏感器宇航服摄像机及深空探测设备。产品提供U1(类欧空局ESCC9020标准)和U3(NASA Class 3)两种航天级筛选流程,并附辐射测试报告与批次认证。

英特尔Nova Lake桌面处理器解析:52核异构设计颠覆性能格局

英特尔下一代桌面处理器Nova Lake-S(代号)的完整规格于2025年6月密集曝光,其颠覆性的核心设计接口变革及平台升级,标志着x86桌面平台进入超多核时代。本文将结合最新泄露的SKU清单与技术细节,系统性解析该架构的革新意义。

高通双芯战略落地:骁龙8s Gen5携台积电N3P制程卡位中高端市场

根据最新行业信息及供应链消息,高通2024年芯片战略路线图逐渐清晰。除下半年旗舰平台Snapdragon 8 Gen 2 Elite(代号SM8850)外,公司还将布局定位精准的次旗舰产品线——Snapdragon 8s Gen 5(代号SM8845),通过架构复用策略实现性能与成本的动态平衡,进一步完善中高端安卓终端市场布局。

三星430层V10 NAND量产推迟至2026年,技术瓶颈与成本压力成主因

据供应链最新消息,三星电子原定于2025年下半年启动的430层堆叠V10 NAND闪存大规模量产计划面临延期。行业内部评估显示,该项目预计推迟至2026年上半年方能落地,技术实现难度市场需求波动及设备投资压力构成核心制约因素。

Littelfuse KSC PF系列密封轻触开关:灌封友好型开关时代来临

Littelfuse推出的KSC PF系列密封轻触开关专为严苛环境设计,采用表面贴装技术(SMT),尺寸紧凑(6.2×6.2×5.2 mm),具备IP67级防护(完全防尘、1米水深浸泡30分钟不进水),并通过延伸式防护框设计优化灌封工艺。灌封是将PCB元件封装在树脂中以抵御腐蚀、振动和热冲击的关键工艺。传统开关因扁平防护框限制树脂覆盖深度,而KSC PF的延伸结构允许更深的灌封层,提升对PCB整体元件的保护,同时支持鸥翼式或J形弯脚端子选项,适用于工业自动化、医疗设备、新能源汽车等高可靠性领域。