Buck电路的小信号模型及环路设计

发布时间:2011-12-9 阅读量:2864 来源: 我爱方案网 作者:

中心议题:
    *  建立Buck电路小信号数学模型
    *  分析电压模式环路设计
    *  分析电流模式环路设计
解决方案:
    *  采用平均状态方程的方法
    *  环路设计方法
 
引言 

   
设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。

1    Buck电路电感电流连续时的小信号模型 
   
图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。

图1    典型Buck电路
   
S导通时,对电感列状态方程有
   
L=Uin- Uo    (1)
   
S断开,D1续流导通时,状态方程变为
  
L=-Uo    (2)
   
占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为
   
L=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo    (3)
   
稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。
   
由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得
   
L=(D+d)(Uin+)-(Uo+)    (4)
   
式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D的波动量。式(4)减式(3)并略去了两个波动量的乘积项得
   
L=D+dUin-    (5)

 

 


由图1,又有
   
iL=C+    (6)
   
Uo=Uc+ReC    (7)

式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得
   
iL+ReC=(Uo+CRo)    (8)
   
式(8)的推导中假设Re<
这说明稳态时电感电流平均值全部流过负载。对式(8)中各变量附加小信号波动量得
   
iL++ReC=〔Uo++CRo〕(9)

式(9)减式(8)得
   
+ReC=(+CRo)(10)

将式(10)进行拉氏变换得
   
(11)
   
一般认为在开关频率的频带范围内输入电压是恒定的,即可假设=0并将其代入式(5),将式(5)进行拉氏变换得
   
  (12)

由式(11),式(12)得
  (13)

式(13),式(14)便为Buck电路在电感电流连续时的控制-输出小信号传递函数。

2    电压模式控制(VMC) 

   
电压模式控制方法仅采用单电压环进行校正,比较简单,容易实现,可以满足大多数情况下的性能要求,如图2所示。
   
图2中,当电压误差放大器(E/A)增益较低、带宽很窄时,Vc波形近似直流电平,并有
   
D=Vc/Vs(15)
   
d=/Vs(16)

式(16)为式(15)的小信号波动方程。整个电路的环路结构如图3所示。
  
图3没有考虑输入电压的变化,即假设=0。图3中,(一般为0)及分别为电压给定与电压输出的小信号波动;KFB=UREF/Uo,为反馈系数;误差e为输出采样值偏离稳态点的波动值,经电压误差放大器KEA放大后,得;KMOD为脉冲宽度调制器增益,KMOD=d/=1/Vs;KPWR为主电路增益,KPWR=/d=Uin;KLC为输出滤波器传递函数,KLC=。

图2    电压模式控制示意图和相关波形
 

 



图3    开关电源的电压模式控制反馈环路图
   
在已知环路其他部分的传递函数表达式后,即可设计电压误差放大器了。由于KLC提供了一个零点和两个谐振极点,因此,一般将E/A设计成PI调节器即可,KEA=KP(1+ωz/s)。其中ωz用于消除稳态误差,一般取为KLC零极点的1/10以下;KP用于使剪切频率处的开环增益以-20dB/十倍频穿越0dB线,相角裕量略小于90°。
   
VMC方法有以下缺点:
   
1)没有可预测输入电压影响的电压前馈机制,对瞬变的输入电压响应较慢,需要很高的环路增益;
   
2)对由L和C产生的二阶极点(产生180°的相移)没有构成补偿,动态响应较慢。
   
VMC的缺点可用下面将要介绍的CMC方法克服。

3    平均电流模式控制(Average  CMC) 
  
平均电流模式控制含有电压外环和电流内环两个环路,如图4所示。电压环提供电感电流的给定,电流环采用误差放大器对送入的电感电流给定(Vcv)和反馈信号(iLRs)之差进行比较、放大,得到的误差放大器输出Vc再和三角波Vs进行比较,最后即得控制占空比的开关信号。图4中Rs为采样电阻。对于一个设计良好的电流误差放大器,Vc不会是一个直流量,当开关导通时,电感电流上升,会导致Vc下降;开关关断,电感电流下降时,会导致Vc上升。电流环的设计原则是,不能使Vc上升斜率超过三角波的上升斜率,两者斜率相等时就是最优。原因是:如果Vc上升斜率超过三角波的上升斜率,会导致Vc峰值超过Vs的峰值,在下个周波时Vc和Vs就可能不会相交,造成次谐波振荡。

图4    开关电源平均电流模式控制示意图
   
采用斜坡匹配的方法进行最优设计后,PWM控制器的增益会随占空比D的变化而变,如图5所示。

图5    PWM控制器增益与占空比变化关系图
 

 

  
当D很大时,较小的Vc会引起D较大的改变,而D较小时,即使Vc变化很大,D的改变也不大,即增益下降。所以有
   
d=D/Vs(17)
   
不妨设电压环带宽远低于电流环,则在分析电流环时Vcv为常数。当Vc的上升斜率等于三角波斜率时,在开关频率fs处,电流误差放大器的增益GCA为

GCA=GCA(Vo/L)Rs=Vsfs(18)

GCA=/(Rs)=VsfsL/(UoRs)(19)

高频下,将式(14)分子中的“1”和分母中的低阶项忽略,并化简,得

(20)

由式(17)及式(20)有

(21)

将式(19)与式(21)相乘,得整个电流环的开环传递函数为

(22)

将s=2πfc代入上式,并令上式等于1时,可得环路的剪切频率fc=fs/(2π)。因此,可将电流环等效为延时时间常数为一个开关周期的纯惯性环节,如图6所示。

图6    电流环的传递函数示意图
   
显然,当电流误差放大器的增益GCA小于最优值时,电流响应的延时将会更长。
   
 GCA中一般要在fs处或更高频处形成一个高频极点,以使fs以后的电流环开环增益以-40dB/dec的斜率下降,这样虽然使相角裕量稍变小,但可以消除电流反馈波形上的高频毛刺的影响,提高电流环的抗干扰能力。低频下一般要加一个零点,使电流环开环增益变大,减小稳态误差。
   
整个环路的结构如图7所示。其中KEA,KFB定义如前。可见相对VMC而言(参见图3),平均CMC消除了原来由滤波电感引起的极点(新增极点fs很大,对电压环影响很小),将环路校正成了一阶系统,电压环增益可以保持恒定,不随输入电压Vin而变,外环设计变得更加容易。

图7    电压外环反馈环路图

4    峰值电流模式控制(Peak  CMC) 
   
平均CMC由于要采样滤波电感的电流,有时显得不太方便,因此,实践中经常采用一种变通的电流模式控制方法,即峰值CMC,如图8所示。电压外环输出控制量(Vc)和由电感电流上升沿形成的斜坡波形(Vs)通过电压比较器进行比较后,直接得到开关管的关断信号(开通信号由时钟自动给出),因此,电压环的输出控制量是电感电流的峰值给定量,由电感电流峰值控制占空比。

图8    峰值电流模式控制示意图
 

 

   
峰值CMC控制的是电感电流的峰值,而不是电感电流(经滤波后即负载电流),而峰值电流和平均电流之间存在误差,因此,峰值CMC性能不如平均CMC。一般满载时电感电流在导通期间的电流增量设计为额定电流的10%左右,因此,最好情况下峰值电感电流和平均值之间的误差也有5%,负载越轻误差越大,特别是进入不连续电流(DCM)工作区后误差将超过100%,系统有时可能会出现振荡现象。在剪切频率fc以下,由图6可知平均CMC的电流环开环增益可升到很高(可以>1000),电流可完全得到控制,但峰值CMC的电流环开环增益只能保持在10以内不变(峰值电流和平均值之间的误差引起),因此,峰值CMC更适用于满载场合。

峰值CMC的缺点还包括对噪音敏感,需要进行斜坡补偿解决次谐波振荡等问题。但由于峰值CMC存在逐周波限流等特有的优点,且容易通过脉冲电流互感器等简单办法复现电感电流峰值,因此,它在Buck电路中仍然得到了广泛应用。

5    结语

采用平均状态方程的方法可以得到Buck电路的小信号频域模型,并可依此进行环路设计。电压模式控制、平均电流模式控制和峰值电流模式控制方法均可用来进行环路设计,各有其优缺点,适用的范围也不尽相同。

相关资讯
低成本玩转Bode分析!共模扼流圈让普通示波器秒变网络分析仪神器

在电子工程领域,频率响应分析(Bode分析)一直是电路设计和调试的重要工具。然而,专业网络分析仪的高昂价格让许多人望而却步,一个令人惊喜的解决方案——共模扼流圈与示波器的黄金组合,可以极低成本实现专业级Bode分析。通过巧妙利用共模扼流圈的独特特性,配合普通示波器的基本功能,即使是预算有限的爱好者也能获得准确的频率响应曲线。

高速USB接口PCB设计指南:从2.0到3.0的关键技术突破

在现代电子设备中,USB接口已成为数据传输和电力供应的标准配置。一个优秀的USB接口PCB设计不仅能确保信号完整性,还能最大限度地发挥接口的理论传输速度

国产半导体重大突破!攻克28nm以下e-Flash技术填补国内空白

8月21日,中国半导体行业迎来里程碑式进展——领开半导体成功研发并量产28nm以下嵌入式闪存(e-Flash)技术,一举打破国外厂商在该领域的长期垄断。这一突破不仅填补了国内高端存储芯片的技术空白,更为国产MCU、汽车电子及AIoT设备的自主可控提供了关键支撑。

特朗普政府芯片入股计划引争议,全球半导体格局或生变!

近日,有外媒报道称,美国特朗普政府正考虑以“国家安全”为由,强行入股包括英特尔在内的三大芯片巨头,以加强对半导体产业的控制。这一消息迅速引发行业震动,外界担忧此举可能重塑全球芯片产业格局,并对供应链产生深远影响。

第106届中国电子展:构建产业新生态,打造全球创新枢纽

​在全球科技竞争格局深刻重构的背景下,中国电子产业正迎来国产替代与自主创新的历史性机遇。第106届中国电子展紧扣《"十四五"规划》制造强国战略,聚焦基础电子元器件、集成电路等"卡脖子"领域,集中展示从材料、设备到应用的国产化突破成果。