微波站高频开关电源的应用分析

发布时间:2011-12-9 阅读量:1384 来源: 我爱方案网 作者:

中心议题:
    *  高频开关电源的组成
    *  高频开关控制稳压原理 
    *  高频开关电源的特点及分类
解决方案:
    *  POWEC电源系统采用零电压谐振开关技术
    *  POWEC电源采用控制模块无关性的硬件均流方式

引言


随着电子技术的快速发展,开关电源的应用越来越广,开关频率的持续提高使开关电源的性能也得以进一步优化,集成度更高,功耗更低,电路更加简单,工作更加可靠,是开关电源发展的方向。目前,高频开关电源在我省广播电视各微波站得到了广泛的应用,我站现采用广州基仕域通讯有限公司生产的技术先进、质量可靠的挪威POWEC谐振式高频开关电源。

1 高频开关电源的组成



1.1 主电路

从交流电网输入、直流输出的全过程,包括:

(1)输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。

(2)整流与滤波:将电网交流电源直接整流为较平滑的直流电,并向功率因数校正电路提供稳定的直流电源。

(3)功率因数校正:位于整流滤波和逆变之间,为了消除由整流电路引起的谐波电流污染电网和减小无功损耗来提升功率因数。

(4)逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。

(5)输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

1.2 控制电路

一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。

1.3 检测电路

除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据供值班人员观察、记录。

1.4 辅助电源

提供开关整流器本身所有电路工作所需的各种不同要求的电源(交直流各种等级的电压电源)。

2 高频开关控制稳压原理


 

 


开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期问,电源E向负载RL提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部分能量储存起来,在开关断开时,向负载释放。图2中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示:

式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写:为TRC)。

按TRC控制原理,有三种方式

(1)脉冲宽度调制(Pulse Width Modulation,缩写为PWM),开关周期恒定,通过改变脉冲宽度来改变占空比的方式。

(2)脉冲频率调制(Pulse Frequency Modulation,缩写为PFM),导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。

(3)混合调制,导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。

3 高频开关电源的特点

(1)重量轻,体积小,采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积和重量只是相控整流器的1/10。

(2)功耗小,效率高,开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%,较好的可做到91%以上。

(3)功率因数高,相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。经过校正的开磁电源功率因数一般在0.93以上,并目基本不受负载变化的影响(对20%以上负载)。

(4)稳压精度可高达0.2%(相控1%)。

(5)噪音低,在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60 dB。而开关电源在无风扇的情况下可闻噪声仅为45 dB左右。

(6)维护方便,因为开关电源是模块式的,可以在运行中更换,不影响工作(相控电源需停机处理)。

(7)实行N+1配套,可靠性高。稳定、可靠,长寿命,采用N+1冗余配置。

(8)扩容方便。

(9)可由微机控制,远端接口,组成智能化电源设备,便于集中监控。

(10)对交流输入要求低,在三相严重不平衡时,整流系统仍能输出,提供稳定的直流电。

4 高频开关电源的分类

(1)按激励方式可分为:自激式和他激式

自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。自激式电路出现最早,它的特点是电路简单、响应速度较快,但开关频率变化大,输出纹波值较大,不易作精确的分析、设计,通常只有在小功率的情况下使用,如家电、仪器电源。他激式开关电源需要外接的激励信号控制才能使变换电路工作,完成功率变换任务。他激式开关电源的特点是开关频率恒定,输出纹波小,但电路较复杂,造价较高,响应速度较慢。
 

 


(2)按开关电源所用的开关器件可分为:双极型晶体管开关电源、功率MOS管开关电源、IGBT开关电源、晶闸管开关电源等。

功率MOS管用于开关频率100 kHz以上的开关电源中,晶闸管用于大功率开关电源中。

(3)按开关电源控制方式可分为:脉宽调制(PWM)开关电源、脉频调制(PFM)开关电源、混合调制开关电源。

(4)按开关电源的功率变换电路的结构形式可分为:降压型、反相型、升压型和变压器型。变压器型中按开关管输出电路的形式可分为:单端开关电源、双端开关电源。而单端开关电源可分为单端正激型、单端反激型。双端开关电源又可分为推挽型、半桥型、全桥型。

5 POWEC电源的应用

(1)POWEC电源系统采用零电压谐振开关技术,如图3所示:

图3中C1、C2和L的谐振频率始终低于Q1、Q2,从而保证开关管Q1、Q2在零电压条件下导通,消除了开关损耗和寄生电容。

(2)POWEC电源可在恶劣的环境温度-25℃~55℃下正常工作,70℃时可工作两小时。平均无故障时间达一百万小时。

(3)POWEC电源采用控制模块无关性的硬件均流方式,即使控制模块失灵,系统也能保持很好的负载均分,误差小于标准电流的5%,大大提高了系统的稳定性和可靠性;在电池测量方面,提供电压测量端口和温度测量端口;在电池充电方面,除浮充外,还提供三种方式的均充,即手动均充、定时均充和自动均充,以及温度补偿功能和电池限流功能。此外,还提供了输出过压、过流保护、整流模块温度过高保护、可设定的低电压切断装置保护电池或负载。

6 结束语

高频开关电源是一种模块化设计的可靠性和智能化程度高的电源,其体积小,功耗低,效率高,噪音低,稳压精度高,安全可靠,使用维护方便,目前已在各微波站得到广泛应用。

相关资讯
算力、智能与控制的融合:英特尔4U工控机、RK3568主板、HPM伺服板的全面对比

在现代工业自动化向智能化、网络化、柔性化加速演进的大背景下,高性能、高可靠、特定场景优化的核心硬件设备构成了系统的“大脑”、“眼睛”和“四肢”。英特尔4U工控机(IPC-615H5)、RK3568高性能监控主板和HPM6400/6300伺服电机控制板分别代表了通用工业计算平台、边缘AI视觉处理平台和高精度运动控制平台的最典型形态。它们在各自的领域拥有独特优势,共同支撑起复杂的工业控制闭环。本文旨在对这三款核心产品进行全方位对比分析,剖析其技术特点、优劣势、应用场景及市场前景,为工业自动化方案选型提供专业参考。

应对AI算力激增:安森美推出全链路数据中心电源解决方案与指南

人工智能技术,特别是生成式AI和大规模机器学习模型的迅猛发展,对全球数据中心的基础设施提出了前所未有的高要求。海量数据的实时处理与复杂模型训练,导致数据中心计算负载激增,随之而来的功耗攀升已成为产业亟待解决的核心瓶颈。这不仅推高了运营成本,也对电网承载能力和可持续发展目标构成严峻挑战。如何在高性能计算需求持续增长的同时,有效控制并降低能源消耗,成为AI数据中心建设与升级的关键命题。

中日芯片巨头强强联手 芯驰X9SP+罗姆PMIC打造智能座舱新方案

2025年6月25日,全球半导体巨头日本罗姆与中国车规芯片领军企业芯驰科技在上海联合宣布,推出面向智能座舱的参考设计"REF68003"。该方案以芯驰科技旗舰级座舱SoC X9SP为核心,集成罗姆多款高安全等级PMIC电源芯片,已在2025上海车展公开展示。

革新视听!三星2025智能显示器携高端OLED M9与全能AI震撼登场

2025年6月25日,三星电子正式发布三款智能显示器新品——M9(32英寸)、M8(32英寸)及M7(32/43英寸双版本)。该系列首次搭载OLED面板与模块化L型支架,通过AI算法重构人机交互逻辑,标志着智能显示技术进入场景自适应新阶段。

LG Innotek CoF技术挺进iPad OLED供应链 6月迎关键认证

随着苹果持续深化OLED面板在平板电脑领域的应用,其供应链体系正迎来新一轮调整。据产业链权威消息,韩国电子组件制造商LG Innotek正积极推进其覆晶薄膜(Chip on Film, CoF)封装技术进入苹果新一代iPad OLED面板供应链体系。该技术是实现显示驱动芯片与面板电气连接的关键封装方案。