刹车也能充电?!EABS 系统原理及其实现

发布时间:2012-02-10 阅读量:5548 来源: 我爱方案网 作者:

中心议题:
    *  EABS系统的设计原理
    *  EABS系统的主要特点
    *  关于EABS的实现
    *  EABS与反充电介绍

1.  EABS系统的设计原理

无刷EABS系统充分利用了无刷系统电子换向的特点,通过编程控制电机的不同运动状态。目前,无刷电机系统成熟的控制方式为三相六状态PWM驱动方式,检测电机定子和转子相对位置的3个霍尔元件产生的8个信号:001、010、011、100、101、110、111、000,控制器程序自动删除两个非法状态,从六个状态信号产生电机驱动信号。

EABS电子刹车系统内含2套电机驱动程序:

第1套是正常状态,控制电机的正常驱动、刹车断电;

第2套是电刹控制程序,当有电刹信号时,程序启动,断电的同时将霍尔信号人为调整,使电机处于反转状态,相当于将磁场逆转,达到迅速制动的效果。

例如,假设电机霍尔信号为001时,在第二套电刹程序起动时,程序将其改变为100,其余状态也相应反转。在这种方式下,电机在断电后会产生短时高强度能量,能量大小由定子线圈绕组切割磁力线速度决定,当速度降为0时,电刹力消失,即转速越高制动力越强。断电状态下,电机运动产生的能量一部分用于电机制动,另一部分通过控制器内场效应驱动功率管返充回电池。

2.EABS系统的主要特点

与以往的机械刹车断电方式不同,EABS系统应用了全新的制动控制思想,当有刹车信号时,电动轮毂立即制动,并且速度越快制动效果越明显。

EABS电子刹车系统不会消耗蓄电池电能,相反在制动瞬间或下坡制动时,会对电池产生短时返充电,虽然作用时间短,但对于电池极板却可以起到一定的维护效果,有利于延长电池的使用寿命

3. 关于EABS的实现

模拟PWM方式:

关掉上三管和三下管。

编段模拟PWM软件,占空比从0到95%的PWM(占空比逐渐加大)来控制三下管同时打开,频率大概在12K到20K左右,刹车就没有啸叫声了。

从0到95%打开PWM的时间大概在0.5-1.2S时间内完成,然后一直保持95%的占空比的PWM下三管打开,直到刹把信号退出,这种方法电刹可以,但下波滑行反充电控制有困难,因为无法检测电机速度。

硬件PWM方式:

关掉上三管,用CPU的PWM来控制三下管来实现电子刹车。

这里要注意:如果采用16f72的控制电路,有开同步续流功能,在下管上加PWM,一定会在上管上也加了PWM,要将上管的PWM信号关掉,在硬件上要作小小的改进,找一个16F72不用的I/O口,来控制一个三极管(NPN)的b极,e接地,C极接到74HC08的(积分电路)12脚(222电阻)13脚(103电阻)之间,只要在刹车时软件打开这个三极管,积分电路就输出0,这样上三管就全关闭,不受PWM的影响了,要注意的是由于三下管是反相打开的,所以PWM的占空比是反向的,也就是从100%到5%的送出控制,其余的和上面的方式是一样的,因为这个方式是用PWM来控制的,不占用软件,用定时器中断来测电机速度就方便了,也就可以实现下波滑行反充电控制了。

4. EABS与反充电

电机电制动的原理有很多,一般均采用将三相线圈短路,类似再生回馈制动方法制动,这种制动方法控制相当简单,仅需将上桥或下桥全部开通即可。
 

 


由于靠惯性运转的直流永磁电动机相当于一个发电机,上桥或下桥全部开通后即是将发电机输出端短路,完全依靠线间电阻消耗能量,所以有两个坏处:第一是车速越快时制动力越大,容易在高速时发生事故(电机抱死,失控);第二是对MOSFET及线路损害相当严重,使零部件过热烧毁。为了克服这种毛病,EABS控制技术出现了,制动初期使用PWM调制短路开关,使其工作在间歇状态。

由于电动车控制器上桥的浮栅驱动的特殊结构,所以PWM信号只能控制下桥。

这样的控制方法获得了一个意外的效果:在制动的同时,电流表反转,电源电压升高,发生这种现象说明一个道理:电动机在向电源反充电!

在制动过程中由于使用了eabs,因而在开始时,下桥并不是持续导通的,而是不断导通与关闭,这样在导通的时候就有感应电流通过线圈—》下桥—》地—》下桥—》线圈流通,当下桥在关闭时,线圈中的电流不能马上消失,产生的感应电流就会通过线圈—》上桥反向二极—》电源+--》地—》下桥反向二极管—》线圈流通,这样就会产生反充电现象。

下桥导通占空比越大,这个反充电流也越大。但到了100%占空比时,因为所有电流都被短路,充电电流反而没有了。

这种制动方法是有风险的,电机高速运转时,由于整个系统的惯性很大,所以刹车的过程产生的能量也相当惊人,长时间使用必定会造成功率管损坏。一般的做法是选用比较好的功率管,并在启动该功能时限时使用,就是在刹车后5-8秒内即不再有电制动,避免在长距离下坡时损坏功率管。

相关资讯
AI引爆芯片扩产潮:2028年全球12英寸晶圆月产能将破1100万片

国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。

高通双轨代工战略落地,三星2nm制程首获旗舰芯片订单

据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。

美光2025Q3财报:HBM驱动创纪录营收,技术领先加速市占扩张

在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。

对标TI TAS6424!HFDA90D以DAM诊断功能破局车载音频安全设计

随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。

村田量产全球首款0805尺寸10μF/50V车规MLCC,突破车载电路小型化瓶颈

随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。