发布时间:2012-02-16 阅读量:1211 来源: 我爱方案网 作者:
中心议题:
* 拆解多款汽车音响
1 棱帅
直接拉出外筐,起下螺丝就可以。
2 中华
从排挡那里开始撬开桃木,在起下螺丝,往上拆。
3 本田2.3
在面板框上边有个电子表,它的后面有个面板螺丝,须将电子表拿下,再将大面板框撬下,就可见主机螺丝,拆下即可。
4 颐达
1先把仪表台上面的四方行的盖子撬开。2把音响的主机装饰框从下面撬开。3拆除主机两边的四个螺丝,就可以了。
5 飞度1.5
CVT更换音响拆装方法
1)拆下副手侧工具箱,断掉三根空调拉线
2)拆下变速箱护板(下面是油箱/注意)取下水杯槽。
3)取出烟灰缸。
4)取下烟灰缸护板,拔下点烟器插座
5)烟灰缸护板内侧上方对称又两个螺丝,向上固定着中央音响面板 。
6)用较长的平头改锥,从工具箱(空调拉线)伸进去打开音响面板右侧两个卡子,平均用力,中控板和空调旋钮会一起弹出。小心取出主机和主机下侧的空调拉线,(此前的操作应在断电3分钟后进行)更换主机后按相反顺序安装!安装变速箱护板前应用胶带缠好起到保护作用,施工时嘱咐工人所有改锥应该用绝缘胶带缠绕(防止短路)选购音响时必须注意,此车电平是80A的,重负荷不应超过!
6 别克凯越
现代索娜塔 都是直接从下面撬开。
7 本田2.4
首先,我们要把排挡筐拆下,这时候,会看见2颗螺丝,将螺丝旋起。再将香烟缸拿起来,去掉下面的插头和小灯泡,会看见储物盒下方有2颗螺丝。旋起螺丝。将储物盒拿下来,可以看见有2颗朝上固定主机下面部分的8号螺丝。将其旋起。
然后再拆上面的空调口,通常情况下,很多人喜欢用方型螺丝刀去翘开空调面板,其实,这是错误的。
很容易弄伤缝隙镶接处,如果车主在旁边的话,会对你的拆卸方法表示质疑。我的建议就是我们要找一条比较硬的铁丝,在铁丝的一端用老虎钳做一个钩,将这个钩伸进空调口,将狗朝下,慢慢往外拉。等感觉有遇到障碍物的时候,再慢慢用力。这样做的原因是因为空调面诓只有中间有一个铁卡扣。旁边的是塑料扣。
只要你把中间的卡扣拉出来,就可以把面板拆下了,然后再松掉固定主机的3颗螺丝。用一只手把主机上端朝外拉,另一只扶住下端(下端有3个铁卡扣),用力往外拉。OK
8 丰田花冠
撬出音响饰框,连同中央风口一起,可见音响下方有4颗螺丝固定,起出直接向前拉出即可。
9 威弛
仪表上有一棵螺丝那掉,直接橇开饰板就可以的
10 威资
橇开音像外饰板,可以在橇开上饰板一点有2棵螺丝主机下面2棵螺丝就可以那下机头了。
11 皇冠3.0
先把机器两边的小板拉出。卸下10号锣丝即可取出。
12 丰田霸道2700 4000
从下往上拿出音响两边的四条银色饰版,有四个螺丝。把烟灰缸外饰板取开,音响和空调控制板一起拉出。
13 北斗星车
把音响框上边下面两个螺钉取下,再把烟灰缸取出,把点烟器后面的螺母取下,整个音响框就可拿下来了。
国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。
据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。
在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。
随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。
随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。