发布时间:2013-01-10 阅读量:980 来源: 我爱方案网 作者:
AIRE可以在室内室外的任何场合使用,而且也可以在睡眠、走路、跑步或读书时使用。它赢得了红点(Red Dot)设计概念与原型竞赛的设计概念大奖。
耳朵供电的电池:声波转换成电信号
这种芯片小到足以安装在中耳腔内。
由美国麻省理工学院、马萨诸塞州眼耳医院以及哈佛与麻省理工大学的联合健康科学技术中心专家组成的科研小组成功地收集到老鼠内耳的能量给小型传感器件供电。耳蜗电压的工作原理像生物电池一样,可以将声压波形转换成电信号并发送到大脑。这些研究人员开发的芯片可以在不影响正常听力的情况下收集到这种电能。
最终这些器件可以做到监视听力或平衡感受伤的人的耳朵内的生物活动,或对治疗作出响应,甚至可能自己提供治疗手段。
实用!膝关节压电能量收集器
上面照片所示为:(a)膝关节压电收集器。它佩戴在膝盖的外侧,并用背带固定。内部有一个汇聚中心,携带了许多双压晶体管元件。随着走路时关节的旋转,呈环形安装的拨子将对这些元件进行数据采集。(b)这种收集器的几何细节显示了这种安装好的双压电晶片元件的侧视图(上)和顶视图。
来自克兰菲尔德大学、利物浦大学和索尔福德大学的英国研究人员组成的一个小组计划开发一种压电能量收集器,这种收集器将佩戴在膝关节上,依靠采集技术实现上变频。这种能量收集器设计安装在膝部外侧,呈圆形,由一个外环和一个汇聚中心组成。当人在走路状态时,外环随膝关节运动而不断旋转。外环上安装有72个拨子,这些拨子用于“采集”连接内部中心轴的能量产生臂。
由于能量收集器捆绑在膝关节上,因此用户通过简单的行走就能给心率计、计步器和加速度计等人体监护设备供电,而且不用担心用完电能和更换电池。
帅气!带发电机的夹克
如图1所示,a——游丝形线圈组,b——感应元件位置,c——磁铁位置,d——永磁体
拉脱维亚共和国里加科技大学的研究人员开发出一种机械式能量收集器,可以在人走路时发电。这种设备采用了一种平面结构,其中电力转换器由游丝形线圈和一块矩形或弧形磁铁组成,所有元件都可以安装到各种衣饰上。在自然的人体运动中,发电元件彼此会发生相对运动,从而在游丝形线圈内感应出脉冲电压。
据这些研究人员透露,佩戴者以3公里/时、4公里/时、5公里/时和6公里/时的不同步行速度对这种能量收集器进行了广泛测试,这4种速度分别对应一个中年人的慢跑、正常、快跑几种步行状态。
收集来自心跳的振动能量
上图显示了:(a)目前的起搏器,(b)通过能量收集技术供电的未来无线起搏器
法国原子能委员会旗下的电子信息技术研究所(CEA-Leti)和索林集团的研究人员正在开发一种低功耗的心脏起搏器(功耗只有5μW,而目前的起搏器为25μW),这种起搏器由病人自己的心脏跳动产生的机械能来供电。
研究的目标是取消使用电池(因为传统起搏器中的这种电池必须每隔6年到10年通过外科手术的方法进行更换),同时开发出比传统设计小8倍的心脏刺激器(从现在的8立方厘米缩小到1立方厘米)。这种微型化构造允许将起搏器直接附加到心外膜。完整功能的原型今年底就能制造出来,并有望在今后5至10年内经过充分的有效性测试和卫生管理机构的同意后实现工业化生产。
温差!将人体热量转换成电流
研究生Corey Hewitt在纳米技术实验室研究热电织物样品。
电力毡(Power Felt)是美国北卡罗来纳州威克弗里斯特大学纳米科技与分子材料中心研究人员开发的一种热电器件,研究生Corey Hewitt表示只需简单地触摸一小片电力毡就能将人体热量转换成电流。
这种由锁定在柔性塑料纤维内的微型纳米碳管组成、摸起来感觉像织布的电力毡使用温差——比如室温和体温——产生电荷。
脚垫能量收集!步行者的能量
今年5月份为Apl的‘We Can Be Anything’活动——Apl.de.Ap基金会和Ninoy and Cory Aquino基金会建立合作伙伴关系而举办的筹资大会上,黑眼豆豆的Apl.de.ap和Will-i-am在Pavegen发电舞台上尽情表演。
每当有人在英国新创企业Pavegen Systems公司制造的脚垫上走过时,都能收集到可再生能源。这种技术将动能转换成电能,然后存储起来用于各种应用。
跑步发电 跑30分钟够充12部手机
贝鲁特的Nadim Inaty设计了一种绿色车轮——能量再生车轮,它可以将人体产生的动能转换为电能。这种装置由单个设备加上一个踏板和几片绿草组成,共有3种不同等级,以适应不同力量的跑步者,它在30分钟内产生的能量大约足够给12部手机充电。
靠心跳供电的起搏器
密歇根大学航空与航天工程系的研究人员设计出一种设备,它能收集透过胸部的心跳反射能量,并将之转换成电能给起搏器或植入的去纤颤器供电。这些迷你型医疗机器可以发送电信号给心脏使它以健康的节率保持跳动。目前还没有制造出原型,但研究人员宣称“已经规划好详细的发展蓝图,并执行过仿真”,证明了这种想法的可行性。这种设计采用了百分之一英寸薄的压电陶瓷材料,可以随着心跳振动而运动,并将振动能量转换为电能。
在全球半导体产业加速迭代的背景下,三星电子日前披露了其第六代10纳米级DRAM(1c DRAM)的产能规划方案。根据产业研究机构TechInsights于2023年8月22日发布的行业简报,这家韩国科技巨头正在同步推进华城厂区和平泽P4基地的设备升级工作,预计将于2023年第四季度形成规模化量产能力。这项技术的突破不仅标志着存储芯片制程进入新纪元,更将直接影响下一代高带宽存储器(HBM4)的市场格局。
全球领先的物联网设备制造商MOKO SMART近期推出基于Nordic Semiconductor新一代nRF54L15 SoC的L03蓝牙6.0信标,标志着低功耗蓝牙(BLE)定位技术进入高精度、长续航的新阶段。该方案集成蓝牙信道探测(Channel Sounding)、多协议兼容性与超低功耗设计,覆盖室内外复杂场景,定位误差率较传统方案降低60%以上,同时续航能力突破10年,为智慧城市、工业4.0等场景提供基础设施支持。
半导体行业风向标企业亚德诺(ADI)最新财报引发市场深度博弈。尽管公司第三财季营收预期上修至27.5亿美元,显著超出市场共识,但受关税政策驱动的汽车电子产品需求透支风险显露,致使股价单日重挫5%。这一背离现象揭示了当前半导体产业面临的复杂生态:在供应链重构与政策扰动交织下,短期业绩爆发与长期可持续增长之间的矛盾日益凸显。
根据国际权威市场研究机构Canalys于5月23日发布的调研报告,2025年第一季度全球可穿戴腕带设备市场呈现显著增长态势,总出货量达到4660万台,较去年同期增长13%。这一数据表明,消费者对健康监测、运动管理及智能互联设备的需求持续升温,行业竞争格局亦同步加速重构。
2025年5月23日,全球领先的半导体与电子元器件代理商贸泽电子(Mouser Electronics)宣布,正式开售Raspberry Pi新一代RP2350微控制器。作为RP2040的迭代升级产品,RP2350凭借双核异构架构(Arm Cortex-M33 + RISC-V)、硬件级安全防护及工业级性价比,重新定义了中高端嵌入式开发场景的技术边界。该芯片通过多架构动态切换、可编程I/O扩展及4MB片上存储等创新设计,解决了传统微控制器在实时响应能力、跨生态兼容性与安全成本矛盾上的核心痛点,为工业自动化、消费电子及边缘AI设备提供了更具竞争力的底层硬件方案。