安森美中高功率照明LED驱动器解决方案

发布时间:2014-06-30 阅读量:1150 来源: 发布人:

【导读】由于模块化的LED灯条和阵列对电源驱动的要求不尽相同,如何为中高功率LED照明产品提供可靠、高效、灵活的驱动电源方案是设计人员常面临的挑战。安森美提供了阵容广博、相辅相成的方案以满足不同的中大功率LED照明应用的需求。

单段式功率因数校正(PFC)方案


功率因数校正(PFC)可有效改善高谐波分量给电源线、断路开关、电力设施带来的压力。PFC控制器一般可以分为单段式和多段式(常见两段式)两种结构。单段式(如图1所示)可直接电流驱动,只需单个开关及磁性元件,缺点则是100/120Hz纹波,MOSFET应力更大,占空比更大,功率限制在100-150W。
 
单段式PFC结构示意图
图1.单段式PFC结构示意图

典型的单段式PFC LED驱动方案有如安森美半导体的NCL30000。这器件使用临界导电模式(CrM)反激架构,以单段式拓扑结构提供高功率因数设计。安森美半导体基于NCL30000构建的25 W高功率因数单段式LED驱动器参考设计接受90-305Vac宽输入电压范围,能效高于87%,输入电流总谐波失真(THD)小于15%,功率因数(PF)大于0.97,输出功率25W(Vf=36Vdc),LED电流700mA±4%,最大LED电压44Vdc。安森美半导体还推出了单段式连续电流模式(CCM) PFC LED驱动器NCL30001,可以配置为恒流驱动器或固定输出电压驱动器,适合40W到150W LED照明设计。

两段式PFC + DC-DC转换方案

除了上述单段式方案,设计人员还可以根据应用需求选择传统的两段式(PFC段+DC-DC转换段)方案(如图2所示)。前段PFC的功能一方面实现输入电流整形以减小输入电流谐波,另一方面将输入交流电压转换为稳定的直流电压(变化范围一般为380V-400V),后段的DC-DC转换器实现隔离和变换,将稳定直流电压变换为所需要的电压,通常可以用反激、LLC或者降压实现,其优点是易于扩展功率和尺寸,易于提供次级端偏置电源,但相应会带来成本上的提升。
 两段式PFC结构示意图
图2.两段式PFC结构示意图

具体而言,两段式方案中的PFC段可选用的控制器包括NCP1605、NCP1611/ NCP1612/ NCP1615、NCP1631、MC33262/NCP1607/NCP1608、NCP1653/ NCP1654、NCP1652A/ NCL30001等等。

其中,NCP1605是增强型高压、高能效待机模式功率因数控制器,工作在固定频率非连续导电模式(DCM)和/或临界导电模式(CrM)。NCP1605能够作为PFC主控端工作,确保电源的第二段仅在安全条件下启动。它集成跳周期功能,将待机损耗降到最低。
 

NCP1631则是安森美半导体推出的一款单芯片2相交错式PFC控制器,可以替代2颗NCP1601,驱动2个PFC支路,提供接近1的高功率因数。

采用传统的CrM/BCM控制时,负载减少时开关频率上升,轻载时控制器可能进入“突发的调频模式”,产生噪声;采用电流控制频率反走(CCFF)控制时,负载减小时开关频率减小,降低噪声,轻载时控制器频率较低,可在高于可听频带的频率钳位,极轻载时采用跳周期模式工作,可以关闭以提升更好的THD,谷底导通进一步提升能效,减小电磁干扰(EMI)(如图3所示)。NCP1611/NCP1612基于创新的CCFF架构,在PFC电感电流超过设定值时,电路通常工作在临界导电模式(CrM),而当电流低于预设值时,将开关频率线性降低至约20 kHz,此时电流为零。NCP1615同样基于CCFF架构,当电流在预设水平以下时,NCP1615芯片的控制频率会线性衰减到26KHz。

 电流控制频率反走(CCFF)架构原理说明
图3. 电流控制频率反走(CCFF)架构原理说明

对于两段式方案而言,在高压DC-DC次级段,单开关反激架构(图4所示)能效高,设计简单,但功率设计通常小于100W。安森美半导体作为业内领先的固定频率及准谐振(QR)控制方案供应商,提供的准谐振固定频率反激控制芯片具备高压启动、QR谷底锁定、强固的故障保护、宽产品系列(控制器最低6个引脚)等特点。从业内率先推出第一代高压准谐振反激控制芯片NCP1207/NCP1308,到第二代提供更多保护功能的NCP1337/NCP1338,再到第三代轻载能效大幅提升的NCP1380,直到最新的第四代改善空载能耗的NCP1339,安森美半导体一直都在不断努力,开发更多满足客户更宽需求的芯片产品。

 高压DC-DC次级端反激拓扑示意图
图4.高压DC-DC次级端反激拓扑示意图

而相对于其他谐振拓扑,LLC串联谐振转换器(图5所示)则能够在相对宽的输入电压及输出负责范围下工作;所需元器件数量则更少,谐振储能元件能够集成到单个变压器中;初级端开关在所有额定负载条件下能实现零电压开关(ZVS);次级端二极管能够实现零电流开关(ZCS),没有反向恢复损耗,所以作为一种高性价比、高能效及低EMI方案,常用于高输出电压的应用中。
 

NCP1398作为第五代高性能LLC串联谐振控制器,工作频率可以从50kHz高至750kHz,可调节最小开关频率精度达到±3%,可调节死区时间,带外部可调节软启动,精密及高阻抗输入欠压保护,用于过温或过压等严重故障条件下闩锁输入脚,基于定时器的可自动恢复过流保护,闩锁输出短路保护,on/off控制关闭输入脚,跳周期模式,带可调节迟滞,Vcc工作电压达20V,共集电极光耦连接,简化Oring控制,内置过温关闭,600V半桥驱动器,带1A/0.5A汲/源驱动能力,NCP1398B还提供反馈环路开路保护。

 高压DC-DC次级端LLC串联谐振示意图
图5.高压DC-DC次级端LLC串联谐振示意图

LED组合控制器方案

NCL30051是一款PFC及谐振半桥组合控制器,这器件集成了一个CrMPFC控制器及一个半桥谐振控制器,并内置600 V驱动器,针对离线电源应用进行了优化,采用SOIC16封装,具备了所有实现高能效、小外形设计所需的特性。相比传统途径的CrM PFC+LLC通过改变LLC频率来控制功率,NCL30051则是改变PFC大电容电压来控制功率,局限在于大电容电压的动态范围,优点则是简化了固定电压LED驱动器设计。


总结

LED照明正快速演变,新的驱动方案需要能够配合市场上最新的LED应用;同时为提升能效及降低系统总成本,拓扑结构的选择也在演变。为满足中高功率LED照明驱动的需求,安森美半导体提供了阵容广博、相辅相成的方案,包括单段式PFC方案,以及PFC+DC-DC转换的两段式方案,满足不同的中大功率LED照明应用的需求。
相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"