应用于智能电视机的μPC1366C+μPC1353C装配设计方案

发布时间:2015-01-8 阅读量:760 来源: 我爱方案网 作者:

【导读】苏一般的黑白电视机是通过购买三片机芯JG-988型散件进行组装的。主要特点是图像通道采用集成电路μPC1366C,伴音通道采用μPC1353C、场扫描电路采用μPC1031H2,电源电路和行扫描电路采用分立元件。

其中集成电路μPC1366C内含图像中放、检波、预视放、噪声抑制、AGC电压检波、中放AGC、高放AGC放大等功能;μPC1353C集成电路具有伴音中频限幅放大、鉴频、电子音量控制、音频前置放大、功率放大和内部稳压等功能;μPC1031H2集成电路主要由场扫描振荡、锯齿波形成、场推动及场输出构成。这样,公共通道、伴音通道和场扫描电路的外围元件较少,安装、调试较容易。而电源电路和行扫描电路是由分立元件组成,可以训练学生的安装、调试技能,所以采用该型号机芯比较适合学校进行黑白电视机的安装、调试教学。
在具体实训中对该机的安装、调试可按如下几个步骤进行:
 
1、检测元件


电视机中的元件较多,一旦用错,容易造成电路工作不良,或产生故障。

①、电阻的检测:现在用的电阻多数是色环电阻,首先让学生把所有电阻排列好,全部用透明胶带沾在纸上,根据色标在电阻旁写出阻值,最后用万用表核对,大功率电阻用特殊符号标注。
 
②、电容的检测:把相同型号的电容排列在~起,固定在纸上,根据电容上标注的符号,在电容旁写出电容量及额定电压。有些厂家在瓷片电容和云母电容上,标有103、332等,103表示10×l0(的立方)=10000pf,332表示33×l02=3300pf.3n3表示3300pf等,这些都要让学生自已识别。
 
③、二极管的检测:根据二极管正向导通,反向截止的性质,用万用表的电阻档很容易检测二极管的好坏。也可引导学生用二节普通电池串接手电筒灯泡的方法来检测二极管的极性,当二极管的正极接电池正端时,灯泡发光,二极管导通,反之则不发光,二极管不导通。学生使用这种方法,更加直观,能引起学生的学习兴趣。在二极管的使用上,电源整流电路电流较大,应使用面接触型二极管;行AFC和场逆程电路用点接触型二极管1N4148;升压和行阻尼用FR型快恢复二极管。
 
④、三极管极性的判别:(a)、判定基极。用万用表R×100或R×1k挡测量三极管三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得很低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管。(b)、判定集电极c和发射极e。(以PNP为例)将万用表置于R×100或R×1k挡,红表笔接基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值应该是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。在判别三极管的极性时,也可以让学生使用电池串接手电筒灯泡的方法,将电池的~端接三极管的一极,电池串接灯泡的另一端分别连接另外两极,如果灯泡发光,说明开始接的一极是基极b,(不动的是基极),另外两端是集电极c和发射极e。如果电池正端接的是基极,则三极管是NPN型,负端接的是基极,则三极管是PNP型。判别集电极和发射极的方法是(以NPN型兰极管为例):分别将这两极正反接在电池和灯泡串联的电路上,用一个100Ω左右的电阻接在基极和接电池正极的一个极上,如果灯泡发光,则接电阻的一极是集电极,另一极是发射极。
检测电路如下图所示。
                       
2、元件安装

 
将电视机主板分成电源部分;行扫描部分;场扫描部分;同步分离部分;视放部分;伴音部分;公共通道部分。然后按照操作步骤分块安装各部分元件。安装完成一部分以后,均要对这一块电路进行检测调试,符合要求以后再进行下一部分的安装。元件安装时要注意以下事项:
①、组装之前,应对元器件进行搪锡、整形等工艺处理。
 
②、电阻采取贴紧版面组装(无间隙方式),电容采用直立组装方式,而对大容量的电容器,则应在其引脚处加衬垫以防止其歪斜。
 
③、对于小功率三极管也采用正直立组装方式。大功率三极管则应组装在“L”型散热板上。
 
④、整流二极管的组装,若为2CZ×型整流二极管,采用立式组装方式;若为1N××型整流二极管,则采用卧式有间隙组装方式,使二极管离开印底板约0.5~1cm,以利于二极管工作过程中的散热。
 
⑤、对行振荡线圈和行激励变压器的焊接动作要快,一般要求在2~3秒时间内完成一个焊点的焊接。
 
⑥、行逆程电容和阻尼二极管不可漏装或开路。
 
⑦、组装集成电路时,要求烙铁外壳可靠接地,焊接时速度要快,焊点均匀,不虚焊、不短路、无毛疵。

 

 3、电路检测、调试

①电源电路的调试:黑白电视机的电源输出应稳定在12V。如果不是12V,可以通过调整取样电阻的方法校正,如果不能调整,那一定是电源部分存在故障。若输出电压偏高调不下来,要检查稳压二极管是否开路或稳压值是否偏高,取样比较三极管是否开路等;如果输出电压偏低,要检查基准稳压二极管是否装反或击穿,取样比较三极管是否击穿等。只有调整好电源后才能进行其他电路的调整。

 ②行电路的检测与调试:由于行扫描电路工作于高电压、大电流状态,所以组装完毕后,不能急于通电,应先检查元器件的组装是否正确,工艺是否符合要求,然后检测一下行扫描电路的在路电阻值。行供电开口未封时,红表笔接地,黑表笔测行供电在路电阻为10k左右;黑表笔接地,红表笔测行供电在路电阻为8.5K左右;封口后,红表笔接地,黑表笔测行供电在路电阻为850Ω左右;黑表笔接地,红表笔测行供电在路电阻为800Ω左右。检查工作完成之后,才可进行通电检测,否则可能因组装上的问题而造成元器件的损坏。通电后的检测步骤如下:

 (a)电流检测:通电前前级电路的供电工艺开口暂时不封上,而是先用万用表直流电流挡串接在该开口处测电流,正常时该开口处电流应为55~65mA左右(场电路未工作时)。该开口处电流正常后,可用焊锡将开口封闭。

 (b)行振荡级检测:供电开口封闭后,经该开口处向行振荡级,行激励级提供直流电源。对行振荡级的检测首先是判断其是否起振,判断的常用方法是听行频叫声来判断是否起振。由于我国电视制式规定行频频率为15625Hz,刚好在人耳的听觉频率之内,所以行振荡器起振时,可听到轻微的行频“吱吱”叫声。调节行振荡线圈的磁芯,“吱吱”声的频率会有所改变。

 (c)行激励级的检测:正常时,行激励级基极直流电压一般为-0.1V左右的负偏或为零。行激励管集电极电压为10.5V左右。用示波器可观测行激励管集电极的正常波形。

 (d)行扫描电路后级的检测调试:将万用表串人行输出管供电开口上,在未接偏转线圈的情况下行输出管集电极电流正常值约为300~400mA左右。若电流值正常,则可用焊锡将开口封上;若电流太大或太小,说明行输出还有故障,应仔细检查。在行输出级开口封上后,检测行输出管基极电流。
检测方法如下:焊下行输出管基极上串联电阻的一只脚,将万用表置于直流电流挡,串入该回路内,此时表上指示的电流值应为50mA左右。行输出管基极上应有1.5V左右的“dB”电压值,-0.3V左右的平均直流电压和正常的行脉冲信号。行输出管集电极上应有27V左右的电压,若此时行输出管的集电极电压只有12V的电源电压,或者为0V都说明行输出级未能正常工作。

 (e)中、高压电路的检测:100V中压电路的任务主要是向显像管加速极、视放电路、亮度控制电路供电。400V中压电路主要任务是向显像管提供聚焦电压。高压电路是向显像管提供所需的阳极高压,正常值应为13kV左右。
 
③、场电路的检测:对于场振荡部分的检测,主要是判断场振荡是否起振和能否产生锯齿波。场激励、放大输出部分的检测,主要是判断场激励电路是否有锯齿波输入和输出。用示波器能够观察场扫描电路的波形,可按信号流程的顺序,从场振荡级→锯齿波形成→锯齿波输出。
 
④、视放电路的调试与检测:

 (a)通电前的检测。为检验视放电路组装是否正确和避免元器件因通电而受损,所以通电之前应对视放电路的在路电阻进行检测。

 (b)通电后的检测调试。视放电路各极的在路电阻值基本正常后,便可通电进行检测。通电后测视放管的集电极电压应比原理图上所标注的电压高30~40V,这是因为目前中放通道尚未连接,视放管基极上无偏置电压所致。可通过给视放管加上一模拟偏置的方法再测视放管集电极电压。
 
⑤、高频头的检测:电视机是由直流稳压电源向高频头提供11.5V的电源电压和3V的AGC电压。将万用表置于直流电流挡,分别串人两供电回路中,高频头电源供电电流约为15mA左右,AGC电流约为50~100μA。两电流基本正常,说明高频头内直流通路基本正常。
 
⑥、公共通道的检测:公共中放通道组装完毕后,应检查元器件安装是否正确,将万用表置于100mA挡,串八公共通道供电开口处,测得的电流约为70mA左右。

为较准确地调校该电路的谐振频率,可按以下方法进行调试。

 (a)、改自动增益控制为手动增益控制。μPC1366C内部的AGC电路,对中高放电路具有很强的自动控制作用。调节μPC1366C(1)和㈣脚外接的中周磁芯使谐振频率偏离38MHz,采用手控增益,μPC1366C的④脚的电压应不随检波输出信号幅度的变化而变化,即中放、高放电路的增益固定不变,中周的磁芯位置变化对图像质量的影响将很明显。用万用表直流电压挡监测μPC1366C的③脚电压值,在收到图像信号后,用无感起子调整中周的磁芯,使μPC1366C③脚电压值达到最小。

 (b)AGC电路的调整。将高放AGC的静态电压值调在2.8~3V左右。

 (c)用扫频仪进行中放幅频特性的调试。在uPC1366C的④脚上并接一只22μF/16V的固定电容,以增大充放电时间常数,使输出波形稳定。在中周的两端并接一只100W左右的固定电阻,以展宽频带。按上图所示连接好电路。开机后,用无感起子调整中周的磁芯,观察幅频特性曲线是否符合下图所示的要求,且输出衰减从60dB变化到30dB时,曲线形状应基本保持不变。
应用于智能电视机的μPC1366C+μPC1353C装配设计方案

⑦、伴音电路的检测:

 (a)万用表串人供电回路中,音量最小时电流应为30mA,音量最大时电流为200mA左右。

 (b)鉴频特性的调整:一般情况下对鉴频特性的调整,主要靠监听伴音音质来实现。用无感起子调整鉴频线圈的磁芯位置,使伴音质量达最佳状态。若调整鉴频线圈不能使音质达到较理想的状态,也可调整微调电感的磁芯,使图声效果均佳。
 
4、整机统调

 
整机各部分电路组装完毕后,虽进行了分步调试,但为进一步提高整机的总体质量必须进行整机总调。整机统调分为(1)电源部分的调试;在交流220V电源保险管处(电源变压器的初级端)串八万用表,交流电流值应为130mA左右;在整流滤波后的保险管处串入万用表,通电后其直流电流应为1N12A;调节取样可调电阻,使电源输出电压为12±0.2V,纹波电压小于2mV。

 (2)同步范围与亮度、对比度检查接收电视台节目,调节行同步与场同步旋钮,使之能正常同步且同步范围足够。调节亮度和对比度旋钮,应使调节方向与亮度、对比度变化一致,并将所调旋钮置于适当位置。

 (3)偏转线圈的调整调整偏转线圈,使图像不歪斜,并处于屏幕的中心位置。

将偏转线圈靠紧显像管锥体,使屏幕四角不出现暗角。

 (4)显像管阴极电流的调整调节亮度电位器,使阴极电流始终在10~120μmA之间变化。

 (5)行线性的调整调整行线性线圈,使黑白方格大小均匀,最宽和最窄的方格度差应小于10%,如调整行线性仍不能满足线性要求,可采用改变S校正电容容量的办法来进行调校。

 (6)行幅的调整,用电视机接收电视台的测试卡,左右应各有2~1.5格余量;接收棋盘格信号时,水平方向应有16~17个棋盘格。
行幅过宽将使电视机图像测试卡变成扁椭圆形,产生行线性失真,使图像内容减小。行幅的调整可用改变逆程电容的方法进行,行幅大,可减小逆程电容;行幅不足,则可增大逆程电容。

 (7)同步范围的调整

①、行同步调整。调节行振荡线圈时,在左右3~4圈范围内,行频仍能保持同步,而图像只是左右移动一些。将行频线圈调到中间位置,然后向左或右旋一圈,转换频道时,不应出现行不同步现象。

②、场同步调节。调节场同步电位器,使其向左旋到底时,场始终保持同步;向右旋到底时,图像开始向下翻滚。

 (8)场线性调整调节场线性可调电阻,使黑白棋盘格上下对称,大小均匀,方格之间的幅度差应小于5%。

 (9)场幅的调整接收电视测试卡,调场幅电位器使场幅满幅时,上下应各有0.5~1格左右的余量,或用黑白棋盘格时,垂直方向上应有13~14个棋盘格。

相关文章


让HD TV变身Android智能电视机的电视触屏遥控器

缺乏创新,智能电视机顶盒也在劫难逃

智能电视机顶盒市场是否真的前景诱人?
相关资讯
全球芯链共融:新质生产力驱动工业数字化转型新格局

2025年5月14日,全球半导体分销巨头大联大控股在深圳成功举办以「新质工业·引领未来」为主题的峰会,汇聚英飞凌、意法半导体、瑞芯微等16家顶尖原厂及逾500名行业精英。面对全球制造业智能化、低碳化转型浪潮,此次峰会聚焦人工智能、边缘计算、电力电子等新质生产力的技术融合,通过主论坛、分论坛及技术展区三大板块,全方位展示从芯片设计到系统集成的全产业链创新方案。中国工业增加值连续三年稳步增长(2023年4.6%、2024年5.7%、2025年一季度6.5%),印证了“新质工业时代”的全面开启。大联大中国区总裁沈维中在开幕致辞中强调,中国制造业正以技术韧性重构全球供应链,而半导体技术的全链路赋能将成为驱动产业升级的核心引擎。

体积缩小37.7%!看LM-R2S系列如何重塑工业电源格局

根据金升阳官方技术白皮书数据显示,其最新发布的LM-R2S系列机壳开关电源通过8项核心技术创新,实现了工业供电设备在功率密度、环境耐受性及能效表现的三维突破。作为LM-R2系列的迭代产品,该系列解决了传统工业电源在设备小型化与复杂工况适配性之间的矛盾,为智能制造升级提供了高可靠性的供电保障。

存储器市场回暖驱动威刚科技2025年第一季业绩显著增长

2025年第一季度,全球存储器市场迎来关键转折点。DRAM与NAND Flash现货价自2月止跌回升,带动行业库存去化加速,需求端逐步回温。威刚科技董事长陈立白指出,存储器原厂自2024年末起减产调控供给,叠加AI服务器、智能终端等新兴应用需求增长,推动市场价格走出低谷。根据TrendForce数据,尽管此前预测Q1合约价可能下跌,但实际现货市场受备货动能及库存策略影响,价格反弹超预期,成为威刚业绩增长的直接推力。

全大核架构革新旗舰体验 天玑9400e芯片深度解析

MediaTek于5月14日正式推出天玑9400e旗舰移动平台。作为天玑系列的全新力作,该芯片凭借全大核架构设计、第三代4nm制程工艺及多项创新技术,在计算性能、能效管理和AI应用领域实现突破性进展,为智能手机用户提供更卓越的游戏、影像与通信体验。

韩国半导体出口突破116亿美元:存储芯片涨价与HBM需求推高增长

根据韩国产业通商资源部5月14日发布的《2025年4月ICT进出口趋势》报告,韩国4月信息通信技术(ICT)出口额达189.2亿美元,同比增长10.8%,创下有记录以来4月份的最高值。同期贸易顺差为76.1亿美元,主要得益于半导体等高附加值产品的强劲表现。然而,对华、对美两大核心市场的出口增速显著放缓,反映出全球贸易政策不确定性的深远影响。