基于USB传输及CMOS图像传感器的指纹识别仪

发布时间:2015-03-13 阅读量:973 来源: 我爱方案网 作者:

【导读】CMOS图像传感器是近年来得到快速发展的一种新型固态图像传感器。随着CMOS集成电路工艺的不断进步和完善,CMOS图像传感器已经广泛应用 于各种通用图像采集系统中。同时作为一种PC机与外围设备间的高速通信接口。

CMOS图像传感器是近年来得到快速发展的一种新型固态图像传感器。它将图像传感部分和控制电路高度集成在同一芯片里,体积明显减小、功耗也大大降低,满足了对高度小型化、低功耗成像系统的要求。与传统的CCD图像传感器相 比,CMOS图像传感器还具有集成度高、控制简单、价格低廉等诸多优点。因此随着CMOS集成电路工艺的不断进步和完善,CMOS图像传感器已经广泛应用 于各种通用图像采集系统中。同时作为一种PC机与外围设备间的高速通信接口,USB具有许多突出的有点: 连接简便,可热插拔,无需定位及运行安装程序,无需连接外设时关机及重启系统,实现真正的即插即用;高传输速率,USB1.1协议支持12Mb/s;不占 用系统硬件资源,能够自动检测和配置外围设备,不存在硬件冲突问题。

因此,利用CMOS数字图像传感器与USB接口数据传输来实现的指 纹识别仪具有结构简单,体积小,便携化等优点。现将介绍利用OMniVision公司的CMOS彩色数字图像传感器OV762M和cypress公司的 EZ—USB AN2131QC USB控制传输芯片(内部集成了增强形51内核)来实现指纹信息的采集和USB传输,同时由于指纹传感器输出数据的速率(27MB/s)与USB控制器 (AN2131QC)数据传输速率(12Mb/s)的不匹配,故系统采用了SRAM和CPLD构成中间高速缓冲区。

系统结构

应用AN2131QC、CPLD和OV762M设计的指纹识别系统硬件框图如图1所示:

基于USB传输及CMOS图像传感器的指纹识别仪的设计
 
  图1 指纹识别硬件系统简略框架图
 
首先,AN2131QC通过I2C对指纹识别传感器(OV7620)的窗口设置等参数进行配置,光学透镜把像成在OV762M的像面上后,CMOS图像 传感器(OV7620)对其进行空间采样,并按照一定的帧频连续输出8位的数字图像数据Y[7∶M](输出数字图像数据的帧同步信号为VSYNC,水平有 效信号为HREF,输出时钟信号为PCLK)。为了实现指纹传感器输出数据与USB控制器(AN2131QC)读取数据速度与时序的匹配,使用了 SRAM(IS61C1024)和CPLD构成高速缓冲区,利用此高速缓冲区将OV762M采集的指纹数据缓存。最后AN2131QC实现与上位机的 USB通信,将高速缓冲区中数据的传输到PC机进行相应图像处理。

CMOS数字图像传感器OV7620

CMOS数字图像传感器OV762M集成了一个664×492 的感光阵列、帧(行)控制电路、视频时序产生电路、模拟信号处理电路、A/D转换电路、数字信号输出电路及寄存器I2C编程接口。感光阵列得到原始的彩色 图像信号后,模拟处理电路完成诸如颜色分离与均衡、增益控制、gamMA校正、白电平调整等主要的信号处理工作,最后可根据需要输出多种标准的视频信号。 视频时序产生电路用于产生行同步、场同步、混合视频同步等多种同步信号和像素时钟等多种内部时钟信号,外部控制器可通过I2C总线接口设置或读取 OV762M的工作状态、工作方式以及数据的输出格式等。

AN2131QC通过I2C总线接口设定OV762M的寄存器来控制输出帧率 在0.5帧/s~3M帧/s之间变化,输出窗口在4×2~664×492 之间可调(默认输出640×48M的标准VGA格式),设置黑白平衡等。根据指纹采集的需要,窗口输出设置为: 320×288,经过设定后的OV762M输出时序如图2 所示:

基于USB传输及CMOS图像传感器的指纹识别仪的设计

  图2 0V762M输出时序

VSYNC是垂直场同步信号(也是每帧同步信号,CMOS是按列采集图像的),其下降沿表示一帧图像的开始,HREF 提供了一种有效的控制方式,当输出像素行列分别处于设定窗口之间时HREF 为有效高电平,此时输出有效的视频数据,PCLK是输出数据同步信号,上升沿输出一个有效的像素Y[7∶M]。

 

基于CPLD技术的高速数据缓冲区的实现

在由CPLD和SRAM构成的高速数据缓冲区中,CPLD充当了SRAM的控制器,其内部电路实现框图如图3所示:

基于USB传输及CMOS图像传感器的指纹识别仪的设计
 
  图3 SRAM高速缓冲区控制器的CPLD实现

图3中ram_rd,raM_wr为输出到SRAM的读写信号线,raM_data,ram_addr为SRAM的数据地址总线;latch_f为 SRAM的读写允许信号,当为高电平时允许对SRAM写操作,为低电平时允许对SRAM读操作;两个8路三态门用于隔离总线,当对SRAM写时,输出 cpu_datA为高阻态,当对SRAM读时,将采集数据信号Y [7∶M]隔离;cpu_rds,vsync为开始读写信号,单个正脉冲将SRAM地址置0;cpu_rD作为SRAM快速读脉冲,pclk为SRAM写 脉冲;irq为写满标志,用于向上提供中断标志;地址发生器用于产生SRAM地址(IS61C1024有17根地址线)。

基于USB传输及CMOS图像传感器的指纹识别仪的设计
 
  图4 CPLD实现的仿真波形
 
由图3中逻辑知道,当允许对SRAM写(latch_f=1)且采集的数据有效(href=1)时,pclk脉冲通过地址发生器产生地址(sync单个 正脉冲将SRAM地址复位到0),将采集的数据Y[7∶M]写入SRAM中,当写满(写完一帧的32M像素×288像素)时,irq信号有效,通过中断将 latch_f置低允许将SRAM数据读出(cpu_rds单个正脉冲将SRAM地址复位到0),此后cpu_rD通过地址发生器产生地址将SRAM中数 据读出到USB缓冲区。上述逻辑仿真波形如图4 所示(由于数据线和地址线较多,故只取其中部分信号时序,cpu_datA为X 表示其值根据SRAM数据总线上具体值而定),由图4 可知,CPLD实现了对SRAM的控制,与SRAM一起组成了高速数据缓冲区。

USB控制接口芯片AN2131QC特性简介

AN2131QC是基于USB1.1协议设计的,支持高速12Mb/s的传输速率,内嵌有增强型8051微控制器、8kB的RAM和一个智能USB内核 的收发器,它包含一个I2C总线控制器和3个8位多功能I/O口,有8位数据总线和16位地址总线用于外部RAM扩展。其结构如图5所示。

基于USB传输及CMOS图像传感器的指纹识别仪的设计
 
  图5 AN2131QC结构简图

AN2131QC内部的USB差分收发器连接到USB总线的D+和D-上。串行接口引擎(SIE)对USB总线上串行数据进行编码和译码(即实现USB 协议的打包和解包工作),同时执行错误纠正、位填充及其它USB需要的信号标准,这种机制大大减轻了8051的工作,简化了固件的编程。内核微处理器是一 个增强型8051,其指令周期为4 个时钟周期并具有双DPTR指针,同时指令与标准8051兼容。它使用内部RAM存储固件程序和数据,上电后,主机通过USB总线将固件程序和外设特性描 述符下载到内部RAM(也可以直接从板上E2PROM上读取),然后重连接,按照下载的特性描速符进行重枚举,这种设计可以实现软件USB快速批量传输的实现。

当采集的指纹数据导入了由SRAM和CPLD构成的高速数据缓冲缓冲区后,要通过USB接口将数据发送到上位PC机,AN2131QC必须先将数据读入 到内部USB缓冲区,因此,AN2131QC将数据传到内部USB缓冲的速度将是整个USB数据传输速度快慢的关键。为了使USB数据传输(从外部读入数 据并将之传到PC机)达到最快,需要采用很多措施,下面就设计指纹识别仪固件(AN2131QC程序)中采用的USB批量传输进行探讨。

正常情况下,AN2131QC内核结构从外部读入数据到USB的端点缓冲区,要使用的汇编程序为:

movx a,@dptr;读外部数据到acc寄存器incdptr;外部地址加1

incdps;切换DPTR指针(内核有双DPTR指针,用dps进行切换)

movx @dptr,a;将acc内容放入USB缓冲区

incdptr;USB缓冲区地址加1

incdps;切换DPTR指针

由上述程序可知,数据在寄存器中完成操作后,都必须有一个“incdptr”和“incdps”指令来完成16位地址的增加和缓冲区指针切换。为了消除 这种内部消耗,使用AN2131QC提供的一种特殊的硬件指针即自动指针(只用于内部缓冲区),8051装载USB缓冲区地址到两个AUTOPTRH (高字节地址)和AUTOPTRL(低字节地址)寄存器中,向AUTODATA写入的数据就直接存入由AUTOPTR/H2L指向的地址缓冲区中,并且内 核自动增加AUTOPTR/H2L中16位地址的值。这样USB缓冲区可以像FIFO一样来顺序写入数据,节省了每次写内部USB缓冲区时的 “incdptr”指令。同时内核还提供一种快速模式(只用于对外部数据操作),此模式从外部读数据“movx a,@dptr”时,
直接将外部数据总线和内部缓冲区连在一起,由于使用CPLD和SRAM构成的指纹高速缓冲区具有FIFO的性质,所以使用快速模式读 外部指纹数据时也节省了“incdptr”指令。将上述两种方式结合起来,读外部数据到内部缓冲区程序就只需要一条指令:movx @dptr,A(dptR存放AUTODATA寄存器地址),此指令需要两个8051机器周期(8个24MHz时钟周期)。这样,一个字节可以在 333ns内读入到USB端点缓冲区。

在USB接口数据传输一侧,当PC机要对一特定端点进行读数据并发送IN令牌,如果一个IN令牌 到达时8051还没有完成向USB端点缓冲区的数据装载(读外部数据),AN2131QC就发送一个NAK握手信号来响应IN令牌,表明PC机应该在稍后 再发送一个IN令牌。为了解决这种等待从而达到最快的传输速度,可以使用双缓冲技术(端点配对),使8051在前一个数据包在USB总线上传输的时候,装 载块数据的下一个数据包。

结 论

利用CMOS数字图像传感器OV762M和 USB控制器AN2131QC实现的指纹仪结构简单,体积小,使用方便。指纹识别系统中使用CPLD技术实现了高速缓冲,解决了速度时序匹配问题;使用了 快速批量USB传输技术实现了数据的快速传输,使指纹数据的传输达到最高速(每帧传输只用80Ms)。使用现论述的方法实现的指纹仪采集的指纹数据经PC 机重现后效果如图6所示(左图是未经任何处理的重现,右图是经过平滑、细化等算法处理后的重现)。

基于USB传输及CMOS图像传感器的指纹识别仪的设计
 
  图6 采集指纹重现效果(处理前后)
推荐阅读:

MTK+DSP高度安全3D指纹识别设计方案

“国产”iPhone 6 指纹识别背后的灰色产业链

你的指纹是这样被识别的——TI指纹识别技术方案


相关资讯
中国AI产业突破封锁的韧性发展路径及未来展望

在全球科技博弈背景下,美国对华AI芯片出口限制政策持续升级。腾讯总裁刘炽平在2025年第一季度财报会上明确表示,腾讯已具备应对供应链风险的充足储备与技术创新能力,标志着中国AI产业正加速走向自主化发展道路。本文结合产业动态与政策趋势,剖析中国AI产业的战略转型与突破路径。

重塑全球供应链格局:ASM International战略布局应对贸易壁垒

在全球半导体产业链加速重构的背景下,荷兰半导体设备巨头ASM International(以下简称“ASM”)近期通过一系列战略调整引发行业关注。2025年5月15日,该公司宣布将通过转嫁关税成本、加速美国本土化生产及优化全球供应链,应对地缘政治风险与贸易壁垒。面对美国近期加征的“对等关税”政策(涵盖钢铁、汽车等商品,未来可能扩展至半导体领域),ASM展现出显著的供应链韧性:其亚利桑那州工厂即将投产,新加坡基地产能同步扩充三倍,形成“多区域制造网络”以分散风险。与此同时,中国市场成为其增长引擎——2025年中国区销售额或突破预期上限,占比达总营收的20%,凸显其在差异化竞争中的技术优势。这一系列举措不仅反映了半导体设备行业对关税政策的快速响应,更揭示了全球产业链从“效率优先”向“安全韧性”转型的深层逻辑。

国产芯片架构演进之路:从指令集适配到生态重构

在全球半导体产业长期被x86与ARM架构垄断的背景下,国产芯片厂商的生态自主化已成为关乎技术主权与产业安全的核心议题。北京君正集成电路股份有限公司作为中国嵌入式处理器领域的先行者,通过二十余年的技术迭代,探索出一条从指令集适配到生态重构的独特路径——早期依托MIPS架构实现技术积累,逐步向开源开放的RISC-V生态迁移,并创新性采用混合架构设计平衡技术过渡期的生态兼容性。这一转型不仅打破了国产芯片“被动跟随”的固有范式,更在智能安防、工业控制、AIoT等新兴领域实现了从“技术替代”到“生态定义”的跨越。据行业数据显示,其基于RISC-V内核的T系列芯片已占据计算芯片市场80%的份额,成为推动国产架构产业化落地的标杆。本文通过解析北京君正的架构演进逻辑,为国产半导体产业突破生态壁垒提供可复用的方法论。

性能飙升27%!高通骁龙7 Gen4如何改写中端芯片格局?

5月15日,高通技术公司正式推出第四代骁龙7移动平台(骁龙7 Gen 4),以台积电4nm制程打造,性能迎来全方位升级。该平台采用创新的“1+4+3”八核架构,CPU性能较前代提升27%,GPU渲染效率提升30%,并首次支持终端侧运行Stable Diffusion等生成式AI模型,NPU算力增幅达65%。在影像领域,其搭载的三重12bit ISP支持2亿像素拍摄与4K HDR视频录制,配合Wi-Fi 7与XPAN无缝连接技术,重新定义中高端设备的创作边界。荣耀与vivo宣布首发搭载该平台的机型,预计本月上市,标志着生成式AI技术向主流市场加速渗透。

破局高端芯片!小米自研玄戒O1即将发布,性能参数首曝光

5月15日晚间,小米集团CEO雷军通过个人微博账号正式宣布,由旗下半导体设计公司自主研发的玄戒O1手机SoC芯片已完成研发验证,计划于本月下旬面向全球发布。据雷军透露,该芯片将采用业界领先的4nm制程工艺,核心性能指标已接近国际旗舰水平。