智能手机MHP-TA和PPTC在锂电池的设计方案

发布时间:2015-03-17 阅读量:891 来源: 我爱方案网 作者:

【导读】随着电子产品应用功能的日益强大,对于锂电池的要求也越来越高,容量大,体积小而且薄,这就使得锂电池的能量密度越来越高,对安全的要求也就更高了。容量的增大导致充电时间增加,经常需要4、5个小时才能充满电,因此,各家手机制造商都在加紧研究开发快速充电技术。

近年来, 各种便携式电子产品如雨后春笋般的出现在人们的日常生活中,手机、数码相机、音乐播放器、平板电脑、超级本及笔记本电脑几乎人手必备,而为这些电子产品提供能量的则是锂离子电池。随着电子产品应用功能的日益强大,对于锂电池的要求也越来越高,容量大,体积小而且薄,这就使得锂电池的能量密度越来越高,对安全的要求也就更高了。容量的增大导致充电时间增加,经常需要4、5个小时才能充满电,因此,各家手机制造商都在加紧研究开发快速充电技术。

去年年底,国内两家知名手机制造商O和M先后推出了具有快速充电功能的新一代手机,O公司宣传的闪充技术相比传统充电速度提高4倍多,30分钟可以充到75%电量,而且10分钟充电就可以通话2个小时。而M公司的宣传是1小时能充电60%,2.5小时充满。不论实际充电效果如何,相信快速充电是大趋势,很快越来越多的厂家都会推出快速充电的电子产品。

下面我们先来看看锂电池充电的原理。

智能手机MHP-TA和PPTC在锂电池的设计方案

两种快速充电的分析

O公司的闪充是保持传统的5V充电电压,提高充电电流,大电流充电对于电池芯的要求高,可能会影响电池寿命,甚至导致电池发热带来安全隐患。因此,O公司与电池芯厂家联合开发了适合大电流充电的锂电池芯,而且采用多触点、并联方式分散电流,在充电电路及锂电池上共采用了五级安全保护,保险丝也在其中,确保安全。

M公司的设计是采用了高通公司的Quick Charge 2.0技术,提高充电器输出电压及电流的方式来实现电池的快速充电,输出电压从5V提高到9V, 电流也从1A提高的1.6 A,下一代的规范会继续将电流提高到2.0A。目前M公司推出的手机支持两种标准的快速充电器,5V/2A (苹果标准),1小时充电40%,3小时充满;9V/1.2A(高通标准),1 小时充电60%,2.5小时充满,效率提高15%。由于高电压的充电对锂电池的安全保护要求更高,因此,采用较为保险的小电流方式充电,速度略有提高。相信下一代产品将会进一步提高充电电流,大幅提高充电速度。

不论是采用大电流/普通电压、高电压/普通电流还是高电压/高电流,快速充电的本质是提高输入功率,对于锂电池来说, 都是需要研发适合大电流充电的电池芯,通过大电流充电来满足快速充电的需求。

随着对锂电池容量的要求越来越高,锂电池厂家也在加快新型电池的研发,额定充电电压从传统的4.2V提高到4.35V,目前又出现了4.4V充电电压的锂电池,容量进一步提高。而传统的充电器输出电压为5V,充电控制电路会调节充电电压和电流满足锂电池的充电特性。不同锂电池的化学特性不同,因此充放电性能及安全性能也就不同,有的电池芯适合大电流充放电,而有些电池芯可以耐高电压,所以,采用何种快速充电方式要取决于锂电池芯的具体特性。提高充电器的输出电压可以在恒流阶段提高充电功率,实现快速充电。

下图是锂电池的快速充电的特性曲线:

智能手机MHP-TA和PPTC在锂电池的设计方案

锂离子电池由于其自身特性,在过充电、过放电、短路等情况下极易发生安全事故,所以除IC+MosFET的一级保护外还应该有被动器件组成的二级保护,以最大限度地保证锂离子电池的安全。

 

如图是典型的单节锂离子电池保护电路。

智能手机MHP-TA和PPTC在锂电池的设计方案

下图是锂离子电池过充电测试的一个事例。可以看出充电过程中锂离子电池芯内部温度和电压的变化情况,正常1C充电时,电池芯的温度随恒流充电慢慢升高,而随恒压阶段电流减小慢慢降低,整个过程温度可控,安全。当大电流(2C或以上)时,电池芯内部反应剧烈发生热失控,温度急剧升高而发生起火或爆炸。

智能手机MHP-TA和PPTC在锂电池的设计方案

因此,不论哪种方式的快速充电,都是通过提高充电电流或功率来加速锂电池芯内部的反应来实现的,必须通过更多的保护来防止由于电池芯的热失控而引起的起火甚至爆炸。TE的PPTC和MHP-TA 可以有效地提供这种保护,MHP-TA是结合了双金属片和PPTC的温度/电流保护器件,温度保护更加精确,可以适用于电流较大、温度保护要求更高的电子设备,如:智能手机、平板电脑、超级本、笔记本电脑等。MHP-TA及PPTC的特性及应用如下图,紧贴电池芯的设计可以使MHP-TA和PPTC更好的感测电池温度,当电池温度异常升高时可以呈现高阻,阻碍电池的充放电电流,确保电池的安全使用。

智能手机MHP-TA和PPTC在锂电池的设计方案

锂离子电池保护方案中,被动器件MHP-TA和PPTC的选型与客户的应用条件、设计结构、测试标准等有着极其密切的联系,TE的应用工程师可以为您提供最优的锂离子电池二级保护解决方案。
智能手机MHP-TA和PPTC在锂电池的设计方案

相关文章

智能手机OGS单玻璃触控技术演进变局及优势解析方案

一种智能手机手持设备的硬件智能复位设计方案

智能手机Android系统WMA文件播放功能的设计方案
相关资讯
高通联合英伟达重塑数据中心生态,ARM架构能否颠覆传统格局?

2025年5月19日,高通正式宣布将基于英伟达技术开发定制化数据中心CPU,以实现与后者AI芯片的高效协同。这一合作标志着两家科技巨头在算力领域的深度融合,同时也是ARM架构向传统x86主导的数据中心市场发起的又一次冲锋。本文将结合技术演进与行业格局,分析此次合作的战略意义及潜在影响。

71亿美元营收背后的技术博弈:解码应用材料第二季度战略布局

全球半导体设备龙头应用材料公司(Applied Materials)于2025年5月15日公布了2025财年第二季度(截至2025年4月27日)财务报告。财报显示,公司单季度营收达71亿美元,GAAP每股盈余同比增长28%至2.63美元,均创历史新高。这一业绩不仅体现了公司在复杂宏观环境下的韧性,更凸显了其在人工智能(AI)计算和高性能半导体技术领域的核心优势。

Abracon ASWD-S2系列高线性度宽带射频开关技术解析与应用前景

随着5G、物联网(IoT)和智能设备的快速发展,射频前端设计对高性能、宽频带开关的需求日益迫切。Abracon推出的ASWD-S2系列高线性度宽带射频开关,凭借其覆盖DC至8.5GHz的宽频段、30dB高隔离度及34.5dBm高线性度等特性,成为新一代无线通信系统的核心组件。该产品通过优化工艺和封装设计,解决了传统射频开关在信号完整性、空间限制和多协议兼容性上的技术瓶颈,为智能家居、医疗设备和工业物联网等场景提供了高效解决方案。

半导体产业迎来技术分水岭:英特尔18A制程的突围之战

全球半导体行业正经历新一轮技术迭代周期,英特尔近期宣布的18A先进制程引发业界高度关注。作为其工艺路线图中首个融合RibbonFET晶体管架构与背面供电技术(Backside Power Delivery)的节点,18A不仅承载着企业重返技术领导地位的战略使命,更可能重塑全球芯片制造竞争格局。

行业首款SMC封装2kA浪涌保护器件问世:Littelfuse破解高密度电路防护难题

全球工业技术领导者Littelfuse(NASDAQ:LFUS)日前发布革新性电路保护解决方案——Pxxx0S3G-A系列SIDACtor®晶闸管。该产品作为业内首款采用DO-214AB(SMC)封装且支持2kA(8/20μs)浪涌能力的保护器件,成功攻克紧凑空间下的高能瞬态抑制技术难题(源自Littelfuse官方新闻声明)。