经典又简单的声卡话筒功放电路设计方案

发布时间:2016-08-3 阅读量:1147 来源: 我爱方案网 作者:

【导读】用于电脑声卡驻集体话筒前端放大,单管甲类加射随,制作简单。制作原因是恼于声卡话筒端灵敏度太低讲话费劲,调试好后,离话筒3米按打火机声音清晰,效果不错。本文主要为大家介绍几款经典简单的声卡话筒功放电路分析。

超级简单的声卡话筒放大器


用于电脑声卡驻集体话筒前端放大,单管甲类加射随,制作简单。制作原因是恼于声卡话筒端灵敏度太低讲话费劲,调试好后,离话筒3米按打火机声音清晰,效果不错。

三极管为任意低频小功管,C1815、C945、9014之类均可。频率,贝塔,功率太高反倒不好。输入输出电容取值建议不要太大,对于语音用途,图中值足够。

75k电阻负责话筒偏置电压,用高内阻万用表测话筒正,应为0.2~1V。否则调整。电压高,增益大,噪音大。反之亦然。

680K电阻决定工作点和反馈,500K可到1M均可,大点增益高,失真大。小则反之。

47K可变决定三极管工作点,不同管型,供电电压需相应变动,前后级有牵连。调整使其失真最小,增益最高。

电压5~15V均可。当然工作点要相应调整。电压高,失真小增益高。电源不要取自电脑电源盒5V~12V输出,有来自主机方波干扰,用外接独立电源。甚至手机充电器都可用。

发光二级管起保护;工作指示用,最好不要省掉。

外壳可用普通串口盒,电路太简单,直接搭焊。注意地线走线不要形成环路,以免干扰和自激。

调试完毕,考虑机械强度问题。可用密封硅胶填充串口盒内空间。

接插件直接用环氧树脂(双组份胶)粘在串口盒的一半上,注意胶要少,加在几个关键受力点就行。太多,把可动触点粘住就麻烦了。

动圈话筒灵敏度实在太低,接此放大器太勉强,有精神时用运放试试。如果要用1.5V供电的话,可以去掉发光二极管,重新计算下几个偏置电阻,保证三极管b,e 0.6V,话筒偏置1V即可,,,,增益和失真嘛。个人认为5V方案较方便,失真和增益比较折中,废旧充电器遍地都是,随手抓一个就有电,应急还可挂USB取电。
 TDA2822制作话筒功放电路
意外发现:

1,原以为声卡话筒输入都是单声道的。这次竟然发现新一点的声卡芯片支持双通道mic,早知道就选大点的并口盒直接做立体声话放。

TDA2822制作话筒功放电路


这个电路外围元件少,制作简单,音质却出乎意料的好。采用一块双路音频放大集成电路。其主要特点是效率高、耗电省,静态工作电流典型值只有6mA左右,该集成电路的电压适应能力强(1.8V~15V DC),即使在1.8V低电压下使用,仍会有约 100mW的功率输出,具体电路如图所示。
 TDA2822制作话筒功放电路
驻极体话筒MIC将拾取的声音信号转换成电信号后,经C2和W从U1的②脚引入,经U1音频放大后,推动喇叭发音。本机接成BTL输出电路,这对于改善音质,降低失真大有好处,同时输出功率也增加了4倍,当3V供电时,其输出功率为350mW。

电阻R1、R2均选用1/4W金属膜电阻,W为小型碳膜电位器,C2最好选用独石电容器,如没有应选用质量好的瓷片电容,C1、C4、C3选用优质耐压16V,漏电电流小的电解电容,MIC选用高灵敏度驻极体传声器。K选用小型的按钮开关或拨动开关等,U1选用TDA2822M或TDA2822,也可用D2822代替。按图1中数值制作,一般无需调试即可正常工作。

驻极体话筒检测:

例如用MF47万用表的 R X 1O0档,测长城CZⅢ型驻极体话筒,当黑表笔接驻极体话筒芯线、壳,万用表指针指在3kΩ,当用力吹气,指针指在4kΩ的数值(也有的话筒阻值变小)。如果用力吹气,万用表指针摆动得很小,可把两根表笔对调再试,如万用表表针仍然摆动得很小,则说明驻极体话筒已损坏。

驻极体话筒在应用时漏极D必须通过一个4.7~10kΩ的电阻接电源正极,然后再与放大电路连接,如图所示。
给麦克风加装放大电路

电子原件如下:电阻R1为1kΩ,电阻R2为1MΩ,R3也是1kΩ。三极管vT为9014,电容c1为4.7uf,c2为4.7uf,电池1节5号就够了。
给麦克风加装放大电路
一、放大电路工作原理

图1是整个话筒放大电路的电路图,从图1中可以看出,整个电路只要六七个原件。下面大概说说工作原理,其中电阻R1负责给咪头提供工作电压,R2与R3负责给三极管提供偏置电压,电容C1负责把咪头的信号耦合给三极管以便放大,最终放大后的信号通过电容C2耦合后送回到话筒线路的正极中,也就时话筒线最外层的屏蔽层(也就是外层的那层铜网)。图2就是我们制作时要用到的材料或电子元件。

二、制作似的注意事项

整个放大电路所需的电子元件的规格如下:电阻R1为1KΩ,电阻R2为1MΩ,电阻R3为1KΩ,三极管VT为9014,电容C1为4.7μF,电容C2为4.7μF,电池采用一般的五号电池即可,一般正常使用可用半年左右。制作完成后的电路板成品见图3。

在制作过程中要注意以下几点:


1.三极管的管脚一定要接对,否则起不到放大的作用,管脚区分以下三极管引线朝下,平的一面朝自己,依次是E(发射极),B(基极)和C(集电极);2.麦克风咪头也是有极性的(具体区分见图4);

3.耦合电容的极性可通过标记来分辨,有箭头且标记为“-”的引脚是负极,正极一般不作标记。

由于元件少也可直接搭棚焊接,电路板做好后可直接装进麦克风的底座的内,电路板的电源引线则接入麦克风预留的电池槽里即可。

三,效果测试


经过试用,麦克风有效距离完全可以达到5~6米,而且用Office Word 2003的语音输入功能,效果也很明显,离话筒1米左右说话也可准确识别。

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"