汽车Soc系统电磁兼容设计与EMC标准

发布时间:2016-10-20 阅读量:1113 来源: 我爱方案网 作者: wenwei

随着工程师开发日益复杂的方案来满足舒适、安全、娱乐、动力总成、引擎管理、稳定性和控制应用的需求,现代车载电子产品的数量将持续稳定地增长。此外,随着非常复杂精密的电子产品在汽车应用中的日益普及,即使最基本型的车辆也配置了几年前一直是高档车才有的电子设备。

过去,汽车电子的增长动力是舒适和便利等与安全无关的应用。通常,如采用电动升降窗或中控锁,这些产品只不过是取代了现有的机械系统。最近,汽车电子的范畴已经扩展到支持与安全相关的应用,如引擎优化、主被动安全系统以及包括GPS在内的高级信息娱乐系统。

现在,我们正在迎接汽车电子发展的第三次革命。汽车电子不再仅仅支持关键的功能,而且深入到汽车的控制之中,提供重要的驾驶员信息、控制引擎、避撞监测和避碰、执行线控刹车和转向或对车内环境实施智能控制。

对于通用嵌入式硬件电子平台来说,速度和成本是众所周知的问题。这些平台具有基本或公用的硬件功能,通过面向应用的软件设计,可以为同一车型系列或不同车厂的各种车型专门定制功能。系统级芯片(SoC)半导体器件将各种功能集成到单一芯片之中,减少了对元件数量和占位空间的要求,在确保长期可靠性的同时,对于成功地开发通用嵌入式电子平台是至关重要的。

电磁兼容性

随着汽车电子产品数量的增加和复杂电子模块在整个车辆中分布的增加,工程师面临日益严峻的电磁兼容性设计挑战,问题主要存在于三个方面:

1. 如何把电磁易感性(EMS)降低到最小?以保护电子产品免受其它电子系统(如移动电话、GPS或信息娱乐系统)的有害电磁辐射的影响。

2. 如何保护电子产品免受恶劣汽车环境的影响?包括电源电压大的瞬间变化、重负载或感性负载(如车灯和启动机)引起的干扰。

3. 如何将可能对其它汽车电子电路产生影响的EME控制为最小?

随着系统电压、车载电子设备数量以及频率的增加,这些问题将更加具有挑战性。此外,许多电子模块将与廉价的、线性度较低、偏移较大的低功率传感器接口,这些传感器工作在小信号状态,电磁干扰对它们工作状态的影响可能是灾难性的。


符合性和标准

上述问题表明,汽车EMC符合性测试已经成为汽车设计的主要元素。符合性测试的标准化一直在车厂、车厂配套供应商及不同的立法团体中进行。然而,EMC问题发现得越晚,找到EMC问题的根源就越困难,解决方案的成本会越高,受到的局限性就可能越大。正因为如此,从IC设计、PCB量产、模块的实现到整车的设计的全过程着手考虑EMC问题将是基本的设计方法。为了便于实施这一过程,模块级预符合性测试和IC级测试已经实现了标准化。

设计符合EMC的IC和模块

下面是IC设计应该遵循的EMC标准:

EME标准 IEC 61967: 针对150kHz到1GHz范围的辐射型和传导型电磁发射的测量。

EMS标准 IEC 62132: 针对150kHz到1GHz范围的电磁免疫性(抗电磁干扰性)的测量。

瞬态标准 ISO 7637: 针对公路车辆引起的传导和耦合电气干扰的测量。

系统设计工程师如何才能确保其SoC及最终模块满足上述标准的要求呢?传统的SPICE模型(以集成电路设计为重点的模拟电路仿真器)在此不管用,因为电磁场与基于SPICE的仿真环境不兼容。在IC设计层面,电磁场只能用电场来建模,因为,芯片和封装的尺寸比电磁信号的波长要小得多(1GHz信号的波长是30cm,远远大于IC的尺寸)。在此要注意的关键是辐射型发射和易感性不是IC的主要问题,印刷电路板和电缆上的有效天线才是引起传导型发射和易感性等主要问题的原因。

设计工程师要采取若干技术来确保EMC符合性,下面依次考察EME和EMS。

EM发射

EME(电磁发射)是由像天线一样的外部环路中的高频电流产生的,这样的高频电流包括:

--核心数字逻辑的开关,如DSP和时钟驱动器(同步逻辑生成包含许多高频成分的大量电流尖峰);

--模拟电路的动作;

--数字I/O引脚的开关;

--将大电流尖峰传递到电路板和线束的大功率输出驱动器;

为了将这些因素的影响降低到最小,设计工程师应该尽可能采用低功率的电路,包括较低电压、自适应电源电压、在频域上扩谱时钟信号的架构。当数字系统中某些部分不工作的时候,要将其关闭以减少单时钟周期上的元件开关的数量。此外,通过把时钟和驱动信号的开关边沿斜率降低并提供软开关特性,也有助于减少EME。最后,设计工程师应该仔细设计外部和芯片的版图。例如,采用双绞线的差分输出信号产生的EME较低,且不易受EME的影响。VDD和VSS彼此之间接近和有效的电源去耦也是降低EME的简单技术。

EM易感性

整流/泵、寄生元件、电流、功耗太大是EMS(电磁易感性)的四个最主要干扰效应。高频电磁功率被部分吸纳在IC之中,因此,可能会引起若干扰动。这些扰动包括将大的高频电压传入高阻抗节点及把大的高频电流传入低阻抗节点。

将EMS效应减少到最小的主要办法是把电路设计匀称,因而避免可能出现整流现象。采用差分电路拓扑和版图设计可以做到这一点。即使对于应用中需要小信号的传感器,能够处理较大共模信号的拓扑可能有助于保持系统在宽范围电磁信号内保持线性。通过滤波可以限制进入敏感器件的频率范围,这是另外一种常用的技术,特别是在可以采用片上滤波的时候。采取高共模抑制比(CMRR)和电源抑制比设计(PSRR)也将使电路免受整流干扰,并保持内部节点阻抗为低且所有敏感节点都在片上。最后,为了避免或控制寄生元件和电流,采用保护器件将大于所要求的EMS抑制电平的部分钳位掉是很重要的。该技术有助于避免整流干扰并维持保护电平与信号对称。把衬底电流控制在最小并把这些电流聚集在受控点中也是关键。

AMI公司提供的最新器件

许多设计工程师正在寻求混合信号半导体技术来为当今的汽车应用提供SoC方案,最新的高压混合信号技术特别适合于需要较高电压输出的设计,例如驱动电机或激励继电器,以便将模拟信号调理功能与复杂的数字处理结合起来。

至于高压和混合信号ASIC技术,AMI公司的I2T和I3T系列就是优秀的例子。该设计处理的电压高达80V,基于0.35μm CMOS技术的I3T80在单芯片内集成了复杂的数字电路、嵌入式处理器、存储器、外围设备、高压功能和不同的接口。

AMIS采用混合信号技术和许多上述优秀的EMC设计方法开发了针对汽车应用的一系列ASSP,包括AMIS-41682标准速度、AMIS-42665和AMIS-30660高速CAN收发器。对于要求CAN通信速率最高达1Mbps的12V和24V汽车及工业应用,这些器件为CAN控制器和物理总线之间提供了接口并简化设计和减少了元件数量。例如,AMIS-30660完全符合ISO 11898-2标准,并通过CAN控制器的发送和接收引脚向CAN总线提供差分信令能力;该芯片为设计工程师提供了3.3V或5V逻辑电平接口的选择,确保兼容现有的应用及即将出现的低电压设计需求。仔细匹配输出信号,就可以省略最小化EME所需要的共模扼流圈,同时接收输入的宽共模电压范围(±35V)还可确保高的EMS性能。

电磁兼容设计的重要性

随着现代汽车中电子设备的增加,越来越要求进行良好的设计以确保符合电磁兼容标准的要求。与此同时,随着集成度的提高,汽车设计工程师需要系统级芯片ASIC和ASSP方案来替换多个离散元件的方案。



相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"