征求可解决电源EMI问题的方案

发布时间:2017-01-17 阅读量:1687 来源: 我爱方案网 作者: cicyxu

开关稳压器由于尺寸、输出灵活性和效率优势,成为很多电源转换电路的流行选择。视运行条件的不同而不同,这类电源的转换效率现在可以达到 98% 的水平。然而,尽管有这些优势,这类电源必须在其他参数上做出妥协,其中最难的一个就是噪声。

不过,什么是开关稳压器的“噪声”? 为了更好地理解这个术语,让我们从开关模式电源产生宽带谐波能量这一事实入手。这种人们不想要的能量以两种形式出现,即辐射和传导,在业界,它们通常被称为“噪声”。然而,这个名称确实不够准确,因为开关稳压器的输出“噪声”根本就不是噪声,而是直接与稳压器的开关切换有关的、自然而然剩余的高频分量。这种现象的正确叫法是电磁辐射,或者更常见的叫法是 EMI。而且,确实,EMI 有辐射和传导两种形式。
 
既然在很多电路应用中,要实现最佳性能,无噪声、良好稳压的电源非常重要,那么能够降低在这种转换过程必然存在的噪声也就非常重要了。降低噪声的一种显然方式是使用线性稳压器。然而,尽管线性稳压器提供噪声很低的电源轨,但是在高降压比时,其转换效率不佳,这在大输出电流应用中,可能导致设计出现热量问题。

相应地,开关稳压器通常比线性稳压器的转换效率高,因此当最终应用需要大输出电流时,开关稳压器的热量设计会更简单。人们能够很好地理解,在决定几乎所有电源成败时,组件选择和电路板布局发挥了非常重要的作用。这些方面决定了运行时的 EMI 和热量表现。对外行而言,开关电源布局也许看似魔法,但实际上,在设计初期,这常常是被忽视的一个基本方面。既然总是必须满足运行时的 EMI 要求,那么对电源运行稳定性有好处的事,通常对降低 EMI 辐射也是有好处的。此外,从一开始就确定一个良好的布局,不会给设计增加任何成本,而且实际上,由于无需 EMI 滤波器、机械屏蔽、EMI 测试时间和无数次修改电路板,因此还有可能节省了成本。

另外,在一个设计中采用多个开关模式 DC/DC 稳压器以产生多个轨时,如果这些稳压器并联,以均分电流并提供更大的输出功率,那就有可能加重噪声引起的潜在干扰问题。如果所有稳压器都以一个相似的频率运行 (切换),那么电路中多个稳压器合起来产生的能量就有可能集中在一个频率附近。这种能量的存在可能会成问题,尤其是如果印刷电路板 (PCB) 上其余 IC 以及其他系统电路板相互靠得很近而易于受到这种辐射能量影响时。在工业和汽车系统中,这尤其有可能造成麻烦,因为这类系统都是密集排列的,而且非常靠近电噪声源,例如机械切换的电感性负载、PWM 驱动功率输出、微处理器时钟和触点切换。此外,如果以不同频率切换,那么互调分量有可能混叠到敏感频段中。

在工业、医疗和汽车环境中,散热少、效率高对应用很重要,因此通常用开关稳压器替代换线性稳压器。此外,开关稳压器一般是输入电源总线上的第一个有源组件,因此对整个产品设计的EMI性能有很大的影响。

传导辐射依赖于连接到产品上的导线和走线。既然噪声局限于设计中的特定端子或连接器,那么如上面已经提到的那样,在开发过程中,常常可以通过良好的布局或滤波器设计,相对较早地确保满足传导辐射要求。

辐射 EMI 则完全是另一回事。电路板上携带电流的所有东西都辐射电磁场。电路板上的每一条走线都是天线,每一个铜平面都是谐振器。除了纯正弦波或 DC 电压,任何信号都产生遍布信号频谱的噪声。即使进行了仔细设计,在系统进行测试之前,电源设计师也从不会真正知道辐射 EMI 有多严重。而直到设计基本完成,才会正式进行辐射 EMI 测试。

滤波器常常用来降低 EMI,降低某个频率或某个频率范围内的干扰强度。通过增加金属屏蔽和磁屏蔽,可以衰减经由空间辐射的那部分能量。通过增加铁氧体珠和其他滤波器,可以降伏依赖 PCB 走线的那部分能量 (传导辐射)。EMI 不可能彻底消除,但是可以衰减到其他通信、信号处理和数字组件可接受的水平。此外,为了确保符合工业和汽车系统要求,几家监管机构执行了一些标准。

采用表面贴装技术的新式输入滤波器组件比通孔式组件性能高。然而,这种改进却抵不过今天高频开关稳压器日益提高的要求。在更高的工作频率上要求非常短的最短接通和断开时间,导致因开关转换更快而带来更高次谐波分量,因此增大了辐射噪声。不过,要获得更高的转换效率,就需要这样高的开关速度。开关电容器充电泵没有这种问题,因为这种充电泵以低得多的开关频率工作,而且最重要的是,可以容许较慢的开关切换而不会降低效率。

熟练的 PCB 设计师会设计很小的热环路,并使屏蔽接地层尽可能靠近激活层。然而,要在去耦组件中存储充足的能量,对器件引脚布局、封装结构、热设计和封装尺寸就会有一定的要求,这些要求决定了最小热环路尺寸。使问题更加复杂的是,在典型平面印刷电路板中,走线之间高于 30MHz 的磁性或变压器型耦合将减弱所有滤波效果,因为谐波频率越高,不希望的磁耦合就越有效。

共同探讨解决EMI问题的方案

已尝试过真正解决 EMI 问题的方法是,针对整个电路采用屏蔽盒,即使这样,屏蔽也不能完全防止对盒内敏感电路的耦合。当然,这提高了成本、增大了所需电路板空间、使热量管理和测试更加困难并增加了额外的组装费用。另一种经常使用的方法是降低开关速度。这种方法会产生一些不希望的效应,即降低效率,延长最短接通 / 断开时间以及相关的停滞时间,因此降低了潜在的电流控制环路速度。

然而,在某些噪声应用中,由于相关的 EMI 辐射,电源设计师就是不喜欢使用基于电感器的稳压器。同时,由于相对低的转换效率和需要散热器,线性稳压器 (即 LDO) 也有可能被排除在外。那么快包平台的工程师们,大家都有什么样的解决方案呢,希望大家各抒已见,共同探讨!
相关资讯
2mm²颠覆快充技术!ROHM发布全球最小双MOSFET芯片"

全球半导体制造商ROHM于2025年5月15日宣布,推出突破性30V耐压共源Nch MOSFET产品"AW2K21"。该产品采用2.0mm×2.0mm超小型封装,典型导通电阻低至2.0mΩ,兼具业界领先的功率密度与效能表现,标志着双向供电电路设计进入新一代技术阶段。

AI驱动半导体产业革新,台积电A14制程引领技术突破

在2025年5月15日举行的台积电技术论坛上,其全球业务资深副总经理张晓强指出,半导体产业正迎来以人工智能(AI)为核心动力的增长周期。台积电预测,2025年全球半导体产值将同比增长超10%,而到2030年,行业规模有望突破1万亿美元,其中AI贡献的占比将达到45%。这一愿景的背后,是台积电在先进制程、封装技术及多场景应用生态上的持续创新。

全球微电子巨头Melexis董事会注入亚太基因,战略锚定60%营收核心区

全球领先的微电子工程企业Melexis(迈来芯)于2025年5月15日宣布,其年度股东大会正式通过决议,任命齐玲女士与Kazuhiro Takenaka先生为董事会新成员。此次人事调整标志着公司深化亚太市场战略布局迈出关键一步,旨在通过行业资深人才的多元视角,赋能全球业务增长与区域本地化运营。

工业智能化浪潮下的技术创新图谱:从感知设备到系统集成

在全球制造业数字化转型加速的背景下,半导体与电子元器件领域正经历着技术范式变革。2025年5月,知名NPI代理商贸泽电子联合Analog Devices与Samtec发布的《工业应用中的机器人、AI与ML深度解析》电子书,系统阐述了智能技术如何重构现代工业体系。该著作汇集九位行业专家的前沿观点,重点揭示了三大技术演进方向:

全球半导体巨头加速扩产布局 台积电启动九大新厂建设计划

全球半导体代工龙头企业台积电(TSMC)在5月15日举办的2024年度技术论坛中国台湾专场上,首次披露了年度产能扩张蓝图。据该公司营运/先进技术暨光罩工程副总经理张宗生透露,今年将在中国台湾地区及海外同步推进九个生产设施建设项目,包含八座尖端晶圆制造厂和一座先进封装基地,彰显其在半导体先进制程领域的持续领导力。