金属导电性

发布时间:2012-08-29 阅读量:3474 来源: 我爱方案网 作者:

导电性简介


据小编所了解物体导电的能力。一般来说金属、半导体、
电解质和一些非金属都可以导电。非电解质物体导电的能力是由其原子外层自由电子数以及其晶体结构决定的,如金属含有大量的自由电子,就容易导电,而大多数非金属由于自由电子数很少,故不容易导电。石墨导电,金刚石不导电,这就是晶体结构原因。电解质导电是因为离子化合物溶解或熔融时产生阴阳离子从而具有了导电性。

金属的导电性


物体传导电流的能力叫做导电性。各种金属的导电性各不相同,通常银的导电性最好,其次是铜和金。



 图1.导电最好的金属


导电系数就是
电阻率,"导体"依导电系数可分为银铁。
电阻率与温度等条件有关。
20℃
银的电阻率为1.59×10-8Ω·m
铜为1.72×10-8Ω·m
金为2.40×10-8Ω·m
常温下导电最好的材料是银,20℃时银的电阻率为1.59×10-8Ω·m。其次是铜,电阻率为1.72×10-8Ω·m。熔凝石英的电阻率很大为1.59×1017Ω·m。合金的电阻率较大,康铜4.8×10-7Ω·m,镍铬铝铁约为1.33×10-6Ω·m

金属的导电性原理


金属具有良好的导电性,其电导率在10·厘米以上。金属中的电流密度J可写成电子电荷e、电子的平均漂移速度尌和电子浓度n的乘积,即。可定义电子平均速度与电场强度E的比值为电子迁移率。这样一来,电导率σ可表为σ=neμ。在欧姆定律成立的条件下,迁移率μ 与电场强度无关,决定于材料的性质。最早提出的金属导电理论是P.K.L.德鲁德的经典理论。假定金属中价电子在电场中以同样方式运动,通过碰撞与组成
点阵的离子实交换能量;在两次碰撞之间,电子被电场加速。电子在碰撞与加速这两种作用之下,具有一定的平均速度,即一定的迁移率,从而能解释欧姆定律。



       图2.导电原理


因此,金属中的电阻并不是由于电子与周期排列的原子的碰撞,而是由于原子在
平衡位置附近的热振动(点阵振动)。使严格的周期性势场遭到破坏,引起散射的结果。考虑了电子与点阵振动的相互作用,即电子-声子相互作用之后,理论才很好地解释了电导率与温度的关系,以及电子具有几百个原子间距的长自由程的实验事实。经验表明,金属的电阻率与温度的关系大致上可用一个普适函数来表示式中ΘR是一个特征函数,接近于德拜温度(见德拜模型),T是绝对温度。函数f在高温时趋于1,低温下正比于(T/ΘR)。即在高温时,电阻率正比于T,低温下正比于T。 小编今天就暂时先说到这里 , 若大家有其他不同见解或是疑问, 可以到本站的论坛去发帖跟我爱方案网网友交流...

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。