杂质半导体简介

发布时间:2012-12-18 阅读量:2927 来源: 我爱方案网 作者:

杂质半导体简介


什么是杂质半导体

杂质半导体,是指在本征半导体中掺入某些微量元素作为杂质,从而使半导体的导电性发生显著变化的一种半导体。杂质半导体掺入的杂质主要是三价或五价元素,因掺入杂质性质不同,杂质半导体可分为空穴(P)型半导体和电子(N)型半导体两大类。 半导体中的杂质对电导率的影响非常大,制备杂质半导体时一般按百万分之一数量级的比例在本征半导体中掺杂。

杂质半导体
图一:杂质半导体

杂质半导体分类

杂质半导体:一种是掺有施主杂质的n型半导体,一种是掺有受主杂质的p型半导体,还有一种是既掺有施主杂质、又掺有受主杂质的补偿型半导体——这种半导体虽然掺入了大量杂质,但是它的电导率很低,类似于本征半导体。至于掺有非施主和非受主杂质的半导体,一般不称为杂质半导体,因为这种半导体的电导率很低,很难实现半导体器件的功能,除非特殊需要,这种半导体一般不用。

P型半导体:在纯净的硅(或锗)晶体中,掺人少量硼(或其他三价元素,如铝),硼原子与周围的硅原子形成共价键时,会因缺少一个价电子而在共价键中出现一个空位,这个空位很容易被相邻的价电子填补,而使失去价电子的共价键出现一个空穴。这样,在杂质半导体中出现大量空穴,空穴被称为多数载流子,自由电子被称为少数载流子。这种杂质半导体主要靠空穴导电,称为空穴半导体,简称P型半导体,如图二(b)所示。

N型半导体:在纯净的硅(或锗)晶体中,掺入少量磷(或其他五价元素,如砷),由于掺入的元素数量较少,因此整个晶体结构基本上保持不变,只是某些位置上的硅原子被磷原子替代。磷原子五个价电子中的四个与硅原子形成共价键结构,而多余一个价电子处于共价键之外,很容易挣脱原子核的束缚成为自由电子。这样,半导体中自由电子数目明显增加,大大提高了半导体的导电性能。同时空穴数量远少于自由电子数量,故自由电子被称为多数载流子(简称多子),空穴被称为少数载流子(简称少子)。这种杂质半导体主要以电子导电为主,称为电子半导项目1设计与制作线性集成直流稳压电源体,简称N型半导体,如图二(a)所示。

杂质半导体分类
图二:杂质半导体分类

杂质半导体基本原理

半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(dor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢浅能级—施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电子,属电子导电型,称为N型半导体。由于半导体中总是存在本征激发的电子空穴对,所以在n型半导体中电子是多数载流子,空穴是少数载流子。

杂质半导体原理
图三:杂质半导体原理


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。