铁电存储器、磁性随机存储器和相变存储器的比较

发布时间:2013-07-21 阅读量:1650 来源: 我爱方案网 作者:

更高密度、更大带宽、更低功耗、更短延迟时问、更低成本和更高可靠性是存储器设计和制造者追求的永恒目标。根据这一目标,人们研究各种存储技术,以满足应用的需求。本文对目前几种比较有竞争力和发展潜力的新型非易失性存储器做了一个简单的介绍。

 

铁电存储器(FeRAM)

铁电存储器是一种在断电时不会丢失内容的非易失存储器具有高速、高密度、低功耗和抗辐射等优点。FeRAM已成为存储器家族中最有发展潜力的新成员之一。然而,FeRAM的批评者指出,当达到某个数量的读周期之后FeRAM单元将失去耐久性而且由阵列尺寸限制带来的FeRAM成品率问题以及进一步提高存储密度和可靠性等问题仍然亟待解决。

              

                                 1flash存储器工作原理

相变存储器(OUM)

相变理论的存储器:材料由非晶体状态变成晶体,再变回非晶体的过程中,其非晶体和晶体状态呈现不同的反光特性和电阻特性,因此可以利用非晶态和晶态分别代表“0”“1”来存储数据。相变存储器是基于奥弗辛斯基效应的元件,因此被命名为奥弗辛斯基电效应统一存储器(OUM)。从理论上来说,OUM的优点在于产品体积较小、成本低、可直接写入(即在写入资料时不需要将原有资料抹除)和制造简单,只需在现有的CMOS工艺上增加 2~4次掩膜工序就能制造出来。


             


                                
2OUM存储单元结构示意图

磁性随机存储器(MRAM)

从原理上讲,MRAM的设计是非常诱人的,它通过控制铁磁体中的电子旋转方向来达到改变读取电流大小的目的,从而使其具备二进制数据存储能力。理论上来说,铁磁体是永久不会失效的,因此它的写入次数也是无限的。在 MRAM发展初期所使用的磁阻元件是被称为巨磁阻(GMR)的结构,此结构由上下两层磁性材料中间夹着一层非磁性材料的金属层所组成。由于GMR元件需较大电流成为无法突破的难点,因此无法达到高密度存储器的要求。

总结

FeRAMMRAMOUM这三种存储器与传统的半导体存储器相比有许多突出的优点其应用前景十分诱人。近年来人们对它们的研究己取得了可喜的进展。但它们要在实际应用上取得进一步重大突破还有大量的研究工作要做。同时存储技术的发展是没有止境的但是追求更高密度、更大带宽、更低功耗、更短延迟时间、更低成本和更高可靠性的目标永远不会改变。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。