汽车芯片的设计和制造有何独特之处?

发布时间:2022-11-21 阅读量:1249 来源: 我爱方案网整理 发布人: Aurora

到现在几乎每个人都知道汽车行业仍然短缺半导体芯片,尽管情况似乎正在改善。虽然电动汽车使用更多半导体几乎是理所当然的,但为什么汽油驱动的内燃机 (ICE) 汽车使用这么多芯片?这些芯片是否具有在供不应求时更难提高制造能力的属性?这就是本文将尝试解释的内容。    

 

为什么汽车用的半导体芯片那么多?    

 

纽约时报说现代汽车可以使用多达 3,000 个半导体芯片,而另一个消息来源说超过 1000 个。我敢肯定这取决于你在计算什么,但就在 1960 年代,汽车中的电子设备还非常局限于汽车收音机. 不久前几乎完全是机械的产品怎么会有这么多芯片?答案有几个部分,它反映了芯片在广泛的消费和工业产品中的使用普遍增加:性能、成本以及功能从硬件到软件的迁移。    

 

对于汽车而言,1973 年石油危机后对提高燃油经济性的大力推动导致电子设备在发动机控制中的使用迅速增加。虽然电子点火装置在 1960 年代后期开始出现,但使用微控制器芯片进行发动机控制证明了数字方法的可能性。使用传感器监测温度、曲轴位置、空气质量流量、节气门位置和废气中的氧气浓度等信息,汽车制造商能够显着改善其车辆的燃油经济性和排放状况。控制器芯片进行即时计算以优化发动机性能,这是机械传感器和联动装置无法做到的。

    

汽车芯片的设计和制造有何独特之处

 

这凸显了半导体芯片使用增长背后的一大推动力:使用软件实现许多仅靠硬件可能难以(甚至不可能)实现的功能。计算向燃油喷射器供油的最佳速率可能涉及实时求解复杂的方程式或查找表格中的数字。使用计算机芯片和一些软件很容易(而且成本低廉)。这也是我们如何获得更复杂的自动变速器,使用软件来实现复杂的控制方案,例如下坡时降档。连接到速度传感器的控制器芯片将信号发送到控制变速箱螺线管的半导体电源开关。这凸显了功率半导体、在数字控制下切换功率的设备的作用,在整个车辆中广泛使用。如果您将这些设备也算作“芯片”(正如纽约时报可能所做的那样),那么车辆中的半导体设备数量就会增加。    

 

汽车级半导体芯片及其控制的相关开关和设备比机械芯片更可靠。我记得在我年轻很多的时候,一位朋友向我展示了他们 1968 年 Mercury Cougar 后备箱中的顺序转向信号灯。红色转向灯显然连接到一个“听起来像洗衣机”的小型电机驱动旋转开关。一旦触点磨损或腐蚀,那东西就一团糟。转向半导体开关和一个简单的定时器电路使这样的机制更加可靠。    

 

再举个例子,几年前,我租了一辆大众甲壳虫,当我跳进车里关上车门时,驾驶座的车窗在车门即将关上时摇下了一点,然后又弹了回来。这平衡了乘客舱内的压力,所以你的耳朵不会爆裂。纯机械地实现这种功能确实具有挑战性,但使用微芯片可能只需要几行代码。车辆的车身电子设备——电动车窗、门锁、侧视镜通常连接到车身控制模块 (BCM) 芯片。BCM 还与整个汽车的其他电子单元进行通信,例如仪表盘和许多传感器。当然,信息娱乐系统使用大量芯片。    

 

关于用软件而不是硬件实现事物的另一件事:您可以在发布产品后对其进行修改。我们一直在我们的计算机和电话软件中看到这一点——似乎每十次 Zoom 会议我都会得到一个新的软件更新。但是硬件?特斯拉已经展示了“无线更新”的强大功能,它可以修改汽车的功能。我记得 GE Aviation 还进行了软件修复,以暂时解决波音公司使用的 GEnx 涡轮风扇发动机的高空结冰问题。用软件?哇,令人印象深刻!    

 

汽车芯片的设计和制造有何独特之处?    

 

汽车芯片有几个突出的特点。    

 

首先是它们必须在广泛的极端温度条件下长时间运行,同时承受大量冲击和振动。汽车制造商预计其使用寿命为 15 年,并且在此期间可以容忍十亿分之零的故障率。他们还希望更换零件可以使用 30 年。大多数消费电子设备(如您的手机)的故障率以百万分之几计,五年后将被视为过时。如果您的 PC 遇到错误,请重新启动并再试一次。如果你的发动机控制器突然失灵,你不会把车停在路边重新启动(尽管我听说电动汽车的信息娱乐系统会发生类似的事情)。    

 

汽车电子委员会(由底特律三巨头建立)维护着一系列芯片资格标准。对于工作温度,它定义了 0、12 3 级工作范围,其中 1 级涵盖 -40ºC +125ºC2 级涵盖 -40ºC +105ºC。顺便说一句,它的上限比沸水的温度还要高。这是一个比大多数消费类芯片所见过的更具挑战性的范围。芯片需要可靠,因此必须对其进行设计和测试,以在极端条件下具有足够的使用寿命。    

 

第二个要求是它们的设计必须考虑到安全性。ISO 26262——功能安全标准涵盖了其中的很多内容,它涵盖了一系列内容,从它们的设计方式到如何处理故障。    

 

最后,半导体工厂的芯片制造工艺必须“合格”,这通常需要六个月的时间。晶圆厂还需要针对高温设备模型、更厚的互连和其他增强可靠性的东西修改他们的工艺设计套件。之后,芯片必须经过广泛测试才能安装到车辆中。这意味着在高温和恶劣条件下进行加速寿命测试,以模拟多年的服务。主流汽车制造商需要长达 3-5 年的时间来设计、测试和验证新芯片。    

 

正如我前面指出,许多汽车微控制器采用90纳米技术,并且已经难以增加容量。近两年的短缺促使一些汽车芯片供应商转向65/55nm节点,有的甚至跃升至40nm。但 DigiTimes表示,采用 40 纳米工艺制造的新芯片最多需要五年时间才能通过验证流程并投入新车,这意味着现有技术将在未来一段时间内继续使用。这就是为什么汽车芯片短缺问题的缓解时间比大多数人都长。

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
村田BLM15VM系列量产在即:车规级磁珠解决高频通信干扰难题

在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。

微软战略转型:裁员重组与800亿美元AI投资的双轨并行

据彭博社6月20日报道,微软计划于今年7月启动大规模组织结构调整,预计裁员数千人,主要集中在全球销售与客户服务部门。此举引发行业对科技巨头战略重心迁移的高度关注,尤其引人瞩目的是其裁员节省的资金流向——微软官方确认将在新财年向人工智能基础设施领域投入约800亿美元。

Microchip新一代DSC破解高精度实时控制难题,赋能AI电源与电机系统

在AI服务器爆发式增长、新能源系统复杂度飙升的产业背景下,传统控制芯片正面临三重挑战:碳化硅/氮化镓器件的高频开关控制需求、功能安全标准升级、以及机器学习边缘部署的实时性要求。Microchip最新推出的dsPIC33AK512MPS512与dsPIC33AK512MC510数字信号控制器(DSC),通过78ps PWM分辨率与40Msps ADC采样率的核心突破,为高精度实时控制树立了新基准。

全球扫地机器人市场迎开门红 中国品牌领跑优势持续扩大

根据权威机构IDC最新发布的《全球智能家居设备季度追踪报告》,2025年第一季度全球智能扫地机器人市场迎来强劲开局,总交付量达到509.6万台,较去年同期增长11.9%,连续第二个季度实现超过20%的增长率。市场活力显著提升,展现出强劲复苏势头。

汽车电子革新:TDK高集成PoC电感破解ADAS空间与成本困局

随着ADAS渗透率突破50%(据Yole 2023数据),车载传感器供电与数据传输架构面临革命性变革。传统双线分立设计(电源线+信号线)导致线束占整车重量超3%,且故障率居高不下。TDK株式会社推出的ADL8030VA系列PoC专用电感器,通过单元件高集成方案重构滤波电路,为智能驾驶系统提供空间与可靠性双重优化路径。