发布时间:2024-08-9 阅读量:3256 来源: 综合网络 发布人: bebop
运算放大器,简称运放,是现代电子工程中不可或缺的基础元件之一。它最初在模拟计算机中被用于执行复杂的数学运算,因此得名。随着时间的推移,运放不仅保留了其数学运算能力,还发展成为一种多功能的信号处理核心,在各种电子设备中扮演着关键角色。
运放的核心特征在于其高增益和对输入信号的敏感性。理论上,理想运放具有无限的输入阻抗、零输出阻抗、无限带宽和无限增益。然而,实际的运放参数会受限于制造工艺和设计。运放有两个输入端:同相输入端和反相输入端,以及一个输出端。其输出电压理论上等于增益乘以两输入端电压之差。
运放的工作模式主要分为线性和非线性两种。在线性区,运放通常使用负反馈,这使得输入端的电压差接近于零,从而形成所谓的“虚短路”。这种状态下,运放可以实现比例放大、加法、减法、积分和微分等操作。而非线性区通常涉及正反馈或无反馈,此时运放工作在饱和状态,输出电压固定在其电源电压的正或负极限值。
运放的应用范围极其广泛,几乎涵盖了所有电子技术领域。以下是一些典型的应用案例:
信号放大与调节:运放常用于音频、视频和其他信号的放大和调节,确保信号的保真度和稳定性。
滤波器设计:运放可以构建各种类型的滤波器,包括低通、高通、带通和带阻滤波器,用于信号的净化和分离。
数学运算:运放可以执行加法、减法、积分和微分运算,这些在数据处理和控制系统中至关重要。
电压比较器:在非线性应用中,运放作为电压比较器,用于检测信号是否超过了设定的阈值,广泛应用于传感器信号处理。
稳压电路:运放可作为反馈控制的一部分,用于精密的稳压电源,保持输出电压的稳定。
振荡器:运放还能用于构建振荡电路,产生稳定的交流信号,适用于时钟信号生成和测试设备。
运算放大器因其独特的性能和灵活性,成为了电子工程师手中的利器。无论是简单的信号放大,还是复杂的信号处理任务,运放都能提供有效的解决方案。随着技术的不断进步,未来的运放将更加高效、紧凑且适应更广泛的应用场景。对于电子设计者而言,掌握运放的基本原理和应用技巧是必不可少的技能。
美国为防止高端人工智能(AI)芯片通过第三方渠道流入中国,已秘密要求芯片制造商英伟达(NVIDIA)、超威半导体(AMD)等企业在出口至部分国家的AI芯片中植入追踪程序,以便实时监控芯片流向
在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。
在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。
电路板中常用到恒温与温补这两种晶振,恒温晶振与温补晶振都属于晶体振荡器,既有源晶振,所以组成的振荡电路都需要电源加入才能工作
汽车电子系统日益复杂,尤其在48V架构、ADAS与电控系统普及的当下,对瞬态电压抑制器(TVS)的功率密度、高温耐受性及小型化提出了严苛挑战。传统大功率TVS往往体积庞大,难以适应紧凑的ECU布局。威世科技(Vishay)日前推出的T15BxxA/T15BxxCA系列PAR® TVS,以创新封装与卓越性能直面行业痛点,为下一代汽车设计注入强大保护能力。