如何通过信号切换实现设备功耗估量?

发布时间:2025-02-10 阅读量:1445 来源: 发布人: lina

【导读】每当 CMOS VLSI 设计中的逻辑电路切换状态时,都会消耗一些电能,因为晶体管电容会充电到定义的逻辑电平。虽然我们希望功耗尽可能小,但微小的功耗也会导致许多逻辑电路在运行时产生巨大的动态功耗。在设计器件时,必须估算芯片在运行过程中以热量形式耗散的电能。这样做的目的是确定以下事项:必要的冷却措施、对散热器的潜在需求、是否应包括裸露的接地焊盘,或者是否需要通过特殊封装来确保可靠性。


本文重点

  • 通常情况下,我们可以通过人工或使用仿真工具来计算逻辑电路中单个门的功耗。

  • 但是,当多个逻辑电路在运行过程中进行翻转时,直接计算功耗就比较困难。

  • 如果能够可靠地估算功耗,就可以在热仿真中使用此估算值来评估可靠性并确定合适的封装。


每当 CMOS VLSI 设计中的逻辑电路切换状态时,都会消耗一些电能,因为晶体管电容会充电到定义的逻辑电平。虽然我们希望功耗尽可能小,但微小的功耗也会导致许多逻辑电路在运行时产生巨大的动态功耗。在设计器件时,必须估算芯片在运行过程中以热量形式耗散的电能。这样做的目的是确定以下事项:必要的冷却措施、对散热器的潜在需求、是否应包括裸露的接地焊盘,或者是否需要通过特殊封装来确保可靠性。


集成电路的估算技术涉及在逻辑仿真或电气仿真中检查核心逻辑。结合使用这两种方法,通过估计给定时间间隔内影响总散热量的逻辑元件总数,粗略估计 CMOS VLSI 产品的功耗。


估算设备的切换活动和功耗


现代集成电路结构复杂,估算 VLSI 设计中的功耗并非易事。这些产品包含多个逻辑块,其中一些逻辑块独立运行,在任意给定时间内可能仅有部分逻辑块在工作。虽然两个不同的比特流可能承载相同的输入功率,但这并不一定意味着在所有情况下都会产生相同的翻转。逻辑输入接收到的不同比特流将激发设计中的各种信号变化,从而产生不同的功耗。


既然功耗在很大程度上取决于集成电路的输入数据和结构,那么必须使用一些基于逻辑仿真器的概率方法来确定信号切换活动。逻辑元件在切换期间也会产生功耗。逻辑元件功耗的计算公式如下:


如何通过信号切换实现设备功耗估量?


基于漏极电压 (Vdd) 和切换速度的逻辑元件总功耗


这里的 C 代表切换逻辑电路中充电/放电的总电容。电压项指的是 PDN 提供的漏极电压(标称值)。漏电电流通常被忽略,尽管它在热仿真中至关重要(见下文)。需要注意的是,这是无功功率:以热量形式耗散的电能取决于结中的导通电阻,可以使用构成逻辑元件的晶体管的精确 SPICE 模型来进行仿真。


虽然速度不是最快的,但可以比较全面的确定平均信号变化的方法是使用蒙特卡洛仿真并对结果进行统计分析。在掌握平均翻转(例如,每个时钟周期消耗电能的逻辑元件的平均数量)后,可以将这个值乘以每个逻辑元件的预期功耗,从而获得总功耗。由于逻辑元件具有内部电阻,其中一小部分将以热量的形式耗散。


在拥有数十亿个晶体管的现代微处理器中,这会产生大量热量,因此设计人员需要进行仿真评估。


如何利用功耗估算值


在获得动态切换的功耗估算值后,就可以使用该值进行电路仿真或器件热仿真,检查封装和电路板特性如何影响从器件到周围的电路板、空气和任何散热器的热传递。这些封装级仿真有助于初步的可靠性评估,并可能促使设计人员在做原型设计之前进行一些更改。


考虑到这种情况一般发生在 VLSI 设计阶段,因此通常无法准确体现设计封装。但是,这依然为设计团队提供了一个机会,他们可以评估不同类型的封装,预测在各种条件下可能出现的平衡的温度。这类可靠性仿真通常使用场求解器来完成,有时是涉及空气流动的多物理场问题,有时是利用热方程计算的简单温度仿真。


如何通过信号切换实现设备功耗估量?


根据预期的信号变化评估功耗后,便可进行封装仿真。设计人员可以创建最坏情况场景,估算散热和温升,进而评估产品的可靠性。


对于芯片设计师来说,因为需要提前评估封装,所以必须在原型设计之前进行这些仿真。就像封装底部的热焊盘一样,一些简单的封装元件可能会对工作温度产生很大的影响。通过使用更有效的系统分析软件,设计团队可以在简化的工作流程中执行这些关键任务,将它们作为芯片设计和可靠性评估的一部分。


在 VLSI 设计中,一个重要的考虑因素是设备在高温下运行时的漏电电流。如果设计不当,核心逻辑中的高速翻转可能会导致设备温度升高,直到漏电电流占据设备中以热量形式耗散的大部分电能。这种升温可能会导致热失控,最终使芯片烧毁并失效。考虑到这个因素会影响设备中相应的绝对最高温度,在仿真中需要检查它所带来的可靠性问题。


借助 Cadence 的全套系统分析工具,使用信号切换来估量设备的功耗变得更加简单。VLSI 设计师可以评估其产品的可靠性,并根据需要实施独特的封装选项,以应对设计中的功耗和温升问题。Cadence Celsius EC Solver 技术旨在帮助电子系统设计师快速准确地解决当今最具挑战性的热/电子产品散热管理问题。Celsius EC Solver 可以分析复杂电子系统的流体流动和传热。该软件使用专有的多层次非结构化(MLUS)网格划分技术来解决对流、传导和辐射问题,可以分析电子组件、外壳和电力电子中的气流、温度和传热,求解自然对流、强制对流、太阳能加热和液体冷却问题。

文章来源:Cadence楷登PCB及封装资源中心


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

设计革新,效率倍增,这两款图像传感器打造全新视觉系统

跨界融合:模拟与数字技术在电源解决方案中的创新应用

微型密封多匝SMD微调电位器在恶劣环境场景中的应用方案

BMS系统如何赋能实现更安全、更智能的移动机器人?

具备高额定功率与高脉冲耐受能力 SMD 绕线电阻方案

相关资讯
全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。

革新智能驾驶通信:移远车载蜂窝天线补偿器如何破解行业痛点?

在2025上海国际车展上,移远通信推出的全新车载蜂窝天线补偿器引发行业关注。该产品通过双向动态补偿、微秒级频段切换及混频电路集成等核心技术,解决了车载通信中长期存在的射频链路损耗难题,为智能网联汽车提供稳定高效的通信支持。本文将从技术优势、竞争分析、应用场景及市场前景等多维度解读这一创新方案。

全球DRAM市场变局:三星技术迭代与SK海力士堆叠方案的对决

在全球DRAM市场格局加速重构的背景下,三星电子近期宣布将跳过第八代1e nm工艺节点,转而集中资源开发基于垂直通道晶体管(VCT)架构的下一代DRAM技术。据内部路线图显示,三星计划在2027年前实现VCT DRAM量产,较原定计划提前一个世代。该技术通过三维堆叠晶体管结构,将存储单元面积缩减30%,并利用双晶圆混合键合工艺解决信号干扰问题,被视为突破传统平面工艺物理极限的核心方案。

京东方2025年一季度净利润飙升64% 显示业务领跑全球推动业绩新高

2025年4月28日,京东方科技集团股份有限公司(以下简称“京东方”)发布2025年第一季度财报,以多项核心经营指标的历史性突破,彰显其作为全球半导体显示龙头企业的强劲发展动能。报告期内,公司实现营业收入505.99亿元,同比增长10.27%,创下一季度收入新高;归属于上市公司股东的净利润达16.14亿元,同比大幅增长64.06%,扣非净利润13.52亿元,同比飙升126.56%。这一业绩表现得益于其“屏之物联”战略的深化落地,以及“1+4+N+生态链”业务架构下各板块的协同创新。