发布时间:2025-02-26 阅读量:1347 来源: 发布人: lina
【导读】在开关模式电源中使用GaN开关是一种相对较新的技术。这种技术有望提供更高效率、更高功率密度的电源。本文讨论了该技术的准备情况,提到了所面临的挑战,并展望了GaN作为硅的替代方案在开关模式电源中的未来前景。如今,电源管理设计工程师常常会问道:现在应该从硅基功率开关转向GaN开关了吗?
在开关模式电源中使用GaN开关是一种相对较新的技术。这种技术有望提供更高效率、更高功率密度的电源。本文讨论了该技术的准备情况,提到了所面临的挑战,并展望了GaN作为硅的替代方案在开关模式电源中的未来前景。如今,电源管理设计工程师常常会问道:现在应该从硅基功率开关转向GaN开关了吗?
氮化镓(GaN)技术相比传统硅基MOSFET有许多优势。GaN是宽带隙半导体,可以让功率开关在高温下工作并实现高功率密度。这种材料的击穿电压较高,可适用于100 V以上的应用。而对于100 V以下的各种电源设计,GaN的高功率密度和快速开关特性也能带来诸多优势,比如进一步提高功率转换效率等。
挑战
用GaN器件替代硅基MOSFET时,肯定会遇到一些挑战。首先,GaN开关的栅极电压额定值通常较低,所以必须严格限制驱动器级的最大电压,以免损坏GaN器件。
其次,必须关注电源开关节点处的快速电压变化(dv/dt),这有可能导致底部开关误导通。为了解决此问题,需布置单独的上拉和下拉引脚,并精心设计印刷电路板布局。
最后,GaN FET在死区时间的导通损耗较高,所以需要尽可能缩短死区时间,与此同时,还必须注意高端和低端开关的导通时间不能重叠,以避免接地短路。
如何入门
GaN在电源设计领域有着广阔的发展前景,但如何开始相关设计,是许多企业的烦恼。比较简单的方法是选用相关的开关模式电源控制器IC,例如ADI公司的单相降压GaN控制器 LTC7891。选择专用GaN控制器可以简化GaN电源设计,增强其稳健性。前面提到的所有挑战都可以通过GaN控制器来解决。如图1所示,采用GaN FET和LTC7891等专用GaN控制器,将大大简化降压电源设计。
图1. 专用GaN控制器有助于实现稳健且密集的电源电路
使用任意控制器IC
使用任意控制器IC 若希望通过改造现有的电源及其控制器IC来控制基于GaN的电源,那么GaN驱动器将会很有帮助,可负责解决GaN带来的挑战,实现简单而稳健的设计。图2为采用 LT8418驱动器IC实现的降压稳压器功率级。
图2. 专用GaN驱动器根据来自传统硅基MOSFET控制器的逻辑PWM信号控制功率级
迈出第一步
选定合适的硬件、控制器IC和GaN开关之后,可通过详细的电路仿真来快速获得初步评估结果。ADI公司的 LTspice® 提供完整的电路模型,可免费用于仿真。这是学习使用GaN开关的一种便捷方法。图3为LTC7890(LTC7891的双通道版本)的仿真原理图。
图3. LTspice,一款实用的GaN电源仿真工具
结论
GaN技术在开关模式电源领域已经取得了许多成果,可用于许多电源应用。未来,GaN开关技术仍将持续迭代更新,进一步探索应用前景。ADI现有的GaN开关模式电源控制器和驱动器灵活且可靠,能够兼容当前及今后由不同供应商研发的GaN FET。
文章来源:亚德诺半导体
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
致力于亚太地区市场的国际领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出基于英飞凌(Infineon)XMC1404 MCU、IMBG65R048M1H CoolSiC™ MOSFET、IPDQ60R010S7 CoolMos™ MOSFET以及2EDS9259X栅极驱动IC的3.3KW双向图腾柱PFC数字电源方案。
热电偶因为其高测量精度、价格经济、容易获得以及较宽的温度测量范围等特点而在工业领域得到普遍应用。它由焊接在一起的两种不同的金属或金属合金线(通常称为热端)组成。热电偶输出电压是两个线端(另一端通常称为冷端)的电压差,冷端必须保持在已知温度。热电偶电压是Seebeck (1921年左右)、Peltier (1834年左右)和Thompson (1851年左右)效应的结合产物。
威世科技Vishay宣布,推出一款全新Cyllene 2 IC,以升级消费品中红外(IR)遥控应用的VSOP383xx系列前置放大电路。这些增强型解决方案采用2mm x 2mm x 0.76mm的QFN封装,以即插即用方式替代该系列中现有的器件,同时提供2.0 V至5.5 V的更宽电源电压范围,高37 %的黑暗环境灵敏度,以及在强DC光和Wi-Fi噪声下的更优性能。
致力于亚太地区市场的国际领先半导体元器件分销商---大联大控股宣布,其旗下世平推出以恩智浦(NXP)S32K144 MCU、NCJ29D5芯片、KW38无线控制芯片为主,辅以芯源系统(MPS)、TDK、莫仕(Molex)等旗下产品为周边器件的汽车UWB Digital-Key Kit应用方案。
该项目将机器学习功能延伸至边缘设备,通过将计算转移到本地设备,以解决延迟、隐私和带宽问题,实现实时洞察。