发布时间:2025-01-17 阅读量:4099 来源: 发布人: lina
【导读】在工业电子设备中,过压保护是确保设备可靠运行的重要环节。本文将探讨如何使用开关浪涌抑制器替代传统的线性浪涌抑制器,以应对长时间的过压情况。与传统线性浪涌抑制器不同,开关浪涌抑制器能够在持续浪涌的情况下保持负载正常运行,而传统线性浪涌抑制器则需要在电源路径中的MOSFET散热超过其处理能力时切断电流。
摘要
在工业电子设备中,过压保护是确保设备可靠运行的重要环节。本文将探讨如何使用开关浪涌抑制器替代传统的线性浪涌抑制器,以应对长时间的过压情况。与传统线性浪涌抑制器不同,开关浪涌抑制器能够在持续浪涌的情况下保持负载正常运行,而传统线性浪涌抑制器则需要在电源路径中的MOSFET散热超过其处理能力时切断电流。
可靠的工业电子设备通常配备保护电路,以防止电源线路出现过压,从而保护电子设备免受损坏。过压现象可能在电源线路负载快速变化时发生,线路中的寄生电感可能导致高电压尖峰。这个问题可通过输入保护电路来解决,比如图1所示的采用ADI LTC4380的保护电路。在该电路中,功率开关M1位于电流传导路径上。当VIN时发生过压时,开关M1将在线性区域内工作,使其表现为欧姆区域的电阻,从而通过MOSFET M1上的压降来调节VOUT。这一机制可有效防止输出电压升高至过高水平,从而保护下游电子设备。然而,这种保护方法的有效时间是有限的,持续时间由开关M1的许可安全工作区(SOA)决定。如果功率MOSFET上的压降一直很高且持续时间超过了限制,MOSFET的温度将超过其最高温度阈值,可能导致器件损坏。LTC4380等集成电路内置了定时器,以防止过压情况的发生。定时器中设定了MOSFET在过压条件下在线性区域工作的时长,通常为数毫秒或数微秒。一旦设定时间结束,开关M1将完全断开,从而保护开关本身,但这也意味着系统的电源将被切断。
图1.采用线性浪涌保护器IC进行过压保护(简化电路)。
为了确保工业电子设备在任何情况下都能可靠运行并获得不间断电源,选择能够长时间耐受过压的解决方案至关重要。这包括考虑故障情形,例如电源线路连接错误可能会导致过压。通过选择能够应对这些情况的解决方案,电路可以可靠运行并避免电源电压中断。此类解决方案可通过图2所示的开关浪涌保护器来实现。
图2.无过压时间限制的开关过压保护电路(简化电路)。
在图2所示的电路中,除了浪涌保护器IC,还使用了电感和外部肖特基二极管。降压开关稳压器作为保护电路运行。然而,仅当输入电压超过设置的最大值时,该开关稳压器才会开始工作。此时间段内的工作通常不需要特别注重能效。简单的肖特基二极管可用作反激二极管。
图3.输入电压和输出电压对过压的响应(上图),以及高频范围内开关节点处的开关电压(下图)。
在图3中,蓝色显示输入电压响应。正常输入电压为16 V。大约2 ms时,过压达到40 V。红色显示输出电压随时间的变化。在VIN过压持续期间,开关DC-DC稳压器激活,将输出电压调节到16 V。绿色显示区域为开关节点电压(在MOSFET、肖特基二极管和电感之间的节点处)。
因此,如图1所示,过压保护电路可以采用线性设计,或者采用特殊的开关(降压)DC-DC稳压器,比如图2中的LTC7860。简单的降压开关稳压器不适合此应用,因为在这种情况下,N沟道MOSFET无法持续导通。
过压保护电路包括线性浪涌保护器和开关浪涌保护器IC。有了开关浪涌保护器,即使遭遇长时间过压,电路也能持续工作。这意味着即使过压持续很长时间,被供电电路仍持续受到保护并正常工作。
结论
越来越多的工业和仪表应用要求使用精密转换器来实现各种工艺的精确控制与测量。此外,这些最终应用还要求更高的灵活性、可靠性和功能集,同时降低成本和电路板面积。元件制造商正在解决这些难题,并推出了一系列产品来满足系统设计人员对当前与未来设计的要求。如本文所述,有多种途径可选择合适的元件用于精密应用,每一种都各有优缺点。随着系统精度的提高,人们需要更加注重合适元件的选择,以满足应用要求。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
在国产计算产业自主化进程加速的背景下,某央企基于海光C86架构的服务器平台,通过客户端与服务器端双端优化,成功实现关键场景性能跃升。客户端大数据读取场景中,技术团队采用跨NUMA绑定与深度指令集优化策略,使吞吐量突破13GB/s,超越同类国外机型12.5GB/s的基准水平,实测性能提升达30%以上。服务器端则通过1DPC内存布局优化、BOLT编译加速及数据校验算法升级,将写入性能提升超10倍,满足高并发AI训练与实时交易系统的严苛需求。
芯原股份(股票代码:688521.SH)在汽车电子领域取得重大突破,其自主研发的车规级智慧驾驶系统级芯片设计平台于2025年4月完成全流程验证,并实现客户项目商业化落地。该平台基于SiPaaS(芯片平台即服务)创新业务模式,整合了芯片架构设计、功能安全认证与车规级IP集成三大核心能力,为ADAS、自动驾驶域控制器等场景提供符合ISO 26262标准的高性能计算解决方案。
在宏观经济环境波动背景下,全球服务器产业正经历结构性调整。据DIGITIMES Research最新行业数据显示,2023年第二季度全球服务器出货量预计实现1.8%的环比增长,这一反常的季度正增长主要源于供应链端的主动避险策略。美国近期针对多国产品实施的差异化关税政策触发产业链积极响应,部分ODM厂商通过前置采购窗口期优化库存策略,尤其是针对AI服务器等高价值产品的备货积极性显著提升。
作为汽车技术与工程行业盛会,AMTS受邀参加上海车展,探寻行业热点与未来趋势。来跟随AMTS的脚步,一起看看汽车领域在电气化、智能化、网联化等多维度的全新突破与变革。
鸿蒙座舱正式启动基于HarmonyOS NEXT的鸿蒙车机操作系统应用先行者开发计划